Skip to main content
Log in

Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this study, an antagonistic bacterium against Fusarium oxysporum was identified and designated as Pseudomonas syringae strain BAF.1 on the basis of 16S rDNA sequence analysis and physiological-biochemical characteristics. It produced catechol-species siderophore at a molecular weight of 488.59 Da and a maximum amount of 55.27 μg/ml with glucose as a carbon source and asparagine as a nitrogen source at a C/N ratio of 10:1, 30°C and pH 7. The siderophore exhibited prominent antagonistic activity against Fusarium oxysporum with a maximum inhibition rate of 95.24% and had also suppressive effects on other kinds of 11 phytopathogenic fungi in the absence of FeCl3·6H2O. Spore germination was completely inhibited by 50 μl of the siderophorecontaining solution, and the ultrastructures of mycelia and spores were also considerably suppressed by siderophore treatment as established by electron microscopy observation. These results indicate that the siderophore produced by Pseudomonas syringae BAF.1 could be potentially used for biocontrol of pathogenic Fusarium oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnow, L.E. 1937. Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine tyrosine mixtures. J. Biol. Chem. 118, 531–537.

    CAS  Google Scholar 

  • Bradley, G.G. and Punja, Z.K. 2010. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber. Can. J. Microbiol. 56, 896–905.

    Article  CAS  PubMed  Google Scholar 

  • Bull, C.T., Wadsworth, M.L., Sorensen, K.N., Takemoto, J.Y., Austin, R.K., and Smilanick, J.L. 1998. Syringomycin E produced by biological control agents controls green mold on lemons. Biol. Control 12, 89–95.

    Article  Google Scholar 

  • Bultreys, A. and Gheysen, D. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG2352. Appl. Environ. Microbiol. 66, 325–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiharn, M., Chunhaleuchanon, S., and Lumyong, S. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J. Microbiol. Biotechnol. 25, 1919–1928.

    Article  Google Scholar 

  • Cordova-Alboresa, L.C., Zapotit, E.S., Ríosc, M.Y., Barrera-Nechaa, L.L., Hernández-Lópeza, M., and Bautista-Banosa, S. 2016. Microscopic study of the morphology and metabolic activity of Fusarium oxysporum f. sp. gladioli treated with Jatropha curcas oil and derivatives. J. Microsc. Ultrastructure 4, 28–35.

    Article  Google Scholar 

  • Diaz, M.E., Villa, P., and Frías, A. 2002. Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Rev. Latinoam. Microbiol. Parasitol. 44, 112–117.

    Google Scholar 

  • Emmert, E.A. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Errampalli, D. and Brubacher, N.R. 2006. Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biol. Control 36, 49–56.

    Article  CAS  Google Scholar 

  • Gajbhiye, A., Rai, A.R., Meshram, S.U., and Dongre, A.B. 2010. Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum. World J. Microbiol. Biotechnol. 26, 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, C.P., Dubey, R.C., and Maheshwari, D.K. 2001. Antibiosismediated necrotrophic effect of Pseudomonas GRC1 against two fungal plant pathogens. Curr. Sci. 81, 90–94.

    Google Scholar 

  • Gupta, C.P., Dubey, R.C., and Maheshwari, D.K. 2002. Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol. Fertil. Soils 35, 399–405.

    Article  CAS  Google Scholar 

  • Kirner, S., Hammer, P.E., Hill, D.S., Altmann, A., and Fischer, I. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180, 1939–1943.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leeman, M., Den Ouden, F.M., Van Pelt, J.A., Dirkx, F.P.M., Steijl, H., and Bakker, P.A.H.M. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86, 149–155.

    Article  CAS  Google Scholar 

  • Mathiyazhagan, S., Kavitha, K., Nakkeerans, S., Chandrasekar, M.K., Renukadevi, P., and Krishnamoorthy, A.S. 2004. PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) wei. Arch. Phytopathol. Plant Prot. 37, 183–199.

    Article  CAS  Google Scholar 

  • Palleroni, N.J. 1984. Family I. Pseudomonadaceae, pp. 143–213. In Krieg, N.R. and Holt, J.G. (eds.) Bergey’s manual of systematic bacteriology, Williams and Wilkins, Baltimore, USA.

    Google Scholar 

  • Park, Y.H., Chung, J.Y., Ahn, D.J., Kwon, T.R., Leed, S.K., and Baee, I. 2015. Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens. Biol. Control 91, 71–81.

    Article  Google Scholar 

  • Santos, S., Neto, I.F., Machado, M.D., Soares, H.M., and Soares, E.V. 2014. Siderophore production by Bacillus megaterium: Effect of growth phase and cultural conditions. Appl. Biochem. Biotechnol. 172, 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Sayyed, R.Z., Badgujar, M.D., Sonawane, H.M., Mhaske, M.M., and Chincholkar, S.B. 2005. Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J. Biotechnol. 4, 484–490.

    CAS  Google Scholar 

  • Sayyed, R.Z. and Chincholkar, S.B. 2009. Siderophore producing Alcaligenes feacalis: more biocontrol potential vis-a-vis chemical fungicide. Curr. Microbiol. 58, 47–51.

    Article  CAS  PubMed  Google Scholar 

  • Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Shenker, M., Oliver, I., Helmann, M., Hadar, Y., and Chen, Y. 1992. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr. 15, 2173–2182.

    Article  CAS  Google Scholar 

  • Skidmore, A.M. and Dickinson, C.H. 1976. Colony interaction and hyphal interference between Sartoria nodorum and phylloplane fungi. Trans. Brit. Mycol. Soc. 3, 57–64.

    Article  Google Scholar 

  • Snow, G.A. 1954. Mycobactin, a growth factor for Mycobacterium johnei: II. Degradation and identification of fragments. J. Chem. Soc. 11, 2588–2596.

    Article  Google Scholar 

  • Storey, E.P., Boghozian, R., Little, J.L., Lowman, D.W., and Chakraborty, R. 2006. Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19, 637–649.

    Article  CAS  PubMed  Google Scholar 

  • Turgay, O.C., Gormez, A., and Bilen, S. 2012. Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environ. Monit. Assess. 184, 515–526.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Chi, Z., Liu, G., Buzdar, M.A., Chi, Z., and Gu, Q. 2009. Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antibacterial activity. Biometals 22, 965–972.

    Article  CAS  PubMed  Google Scholar 

  • Weller, D.M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97, 250–256.

    Article  PubMed  Google Scholar 

  • Wensing, A., Braun, S.D., Buttner, P., Expert, D., Völksch, B., and Ullrich, M.S. 2010. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl. Environ. Microbiol. 76, 2704–2711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson, S.M., Guzmán, M., Marin, D.H., Anas, O., Jin, X., and Sutton, T.B. 2008. Evaluation of Pseudomonas syringae strain ESC-11 for biocontrol of crown rot and anthracnose of banana. Biol. Control 46, 279–286.

    Article  Google Scholar 

  • Zhou, T., Northover J., Schneider, K.E., and Lu, X.W. 2002. Interactions between Pseudomonas syringae MA4 and cyprodinil in the control of blue mold and gray mold of apples. Can. J. Plant Sci. 24, 154–161.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Teng, C., Liang, J. et al. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. J Microbiol. 55, 877–884 (2017). https://doi.org/10.1007/s12275-017-7191-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7191-z

Keywords

Navigation