Skip to main content
Log in

Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In China’s swine industry, copper is generally supplemented above the National Research Council (NRC) requirement (2012) because of its antimicrobial properties and the potential for growth promotion. Yet few are concerned about whether this excess supplementation is necessary. In this study, the 16S rRNA pyrosequencing was designed and used to investigate the effect of dietary copper level on the diversity of the fecal microbial community and the correlation of copper level with the serum level of inflammatory cytokines in Sprague-Dawley rat models. The results showed that the diet containing a high level of Cu (120 and 240 mg/kg) changed the microbial richness and diversity of rat feces associated with the increased copper content in the rat ileac and colonic digesta. Furthermore, a Pearson’s correlation analysis indicated that an accumulation of unabsorbed copper in the chyme was correlated with the microbial composition of the rat feces, which was linked with TNF-α in serum. The results suggest that dietary copper level may have a direct impact on circulating inflammatory cytokines in the serum, perhaps inducing an inflammatory response by altering the microbial composition of rat feces. Serum TNF-α could be the chief responder to excessive copper exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Gaskins, H.R., Stumpf, R.M., Yildirim, S., Torralba, M., et al. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansteinsson, V., Refsnes, M., Skomedal, T., Osnes, J.B., Schiander, I., and Lag, M. 2009. Zinc- and Copper-induced interleukin-6 release in primary cell cultures from rat heart. Cardiovasc. Toxicol. 9, 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, T.A., Cook, D.R., Ward, M.M., Williams, C.M., and Spears, J.W. 2004. Effect of dietary copper source (cupric citrate and,cupric sulfate) and concentration on growth performance and fecal copper excretion in weanling pigs. J. Anim. Sci. 82, 1234–1240.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, J.D., Ansotegui, R.P., Paterson, J.A., Swenson, C.K., and Johnson, A.B. 2001. Effects of supplementing combinations of inorganic and complexed copper on performance and liver mineral status of beef heifers consuming antagonists. J. Anim. Sci. 79, 2926–2934.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, M.T., Dowd, S.E., Galley, J.D., Hufnagle, A.R., Allen, R.G., and Lyte, M. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407.

    Article  CAS  PubMed  Google Scholar 

  • Boente, R.F., Ferreira, L.Q., Falcao, L.S., Miranda, K.R., Guimaraes, P.L.S., Santos, J., Vieira, J.M.B.D., Barroso, D.E., Emond, J.P., Ferreira, E.O., et al. 2010. Detection of resistance genes and susceptibility patterns in Bacteroides and Parabacteroides strains. Anaerobe 16, 190–194.

    Article  CAS  PubMed  Google Scholar 

  • Dewar, M.L., Arnould, J.P., Dann, P., Trathan, P., Groscolas, R., and Smith, S. 2013. Interspecific variations in the gastrointestinal microbiota in penguins. Microbiologyopen 2, 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias, R.S., Lopez, S., Montanholi, Y.R., Smith, B., Haas, L.S., Miller, S.P., and France, J. 2013. A meta-analysis of the effects of dietary copper, molybdenum, and sulfur on plasma and liver copper, weight gain, and feed conversion in growing-finishing cattle. J. Anim. Sci. 91, 5714–5723.

    Article  CAS  PubMed  Google Scholar 

  • Dziarski, R., Park, S.Y., Kashyap, D.R., Dowd, S.E., and Gupta, D. 2016. Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS One 11, 1–24.

    Article  Google Scholar 

  • Felske, A., Wolterink, A., van Lis, R., De Vos, W.M., and Akkermans, A.D.L. 1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30, 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Frank, D.N., Amand, A.L.S., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry, R.S., Ashwell, M.S., Lloyd, K.E., O’Nan, A.T., Flowers, W.L., Stewart, K.R., and Spears, J.W. 2012. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and mRNA expression of hepatic copper regulatory proteins in weanling pigs. J. Anim. Sci. 90, 3112–3119.

    Article  CAS  PubMed  Google Scholar 

  • Gong, J.H., Forster, R.J., Yu, H., Chambers, J.R., Sabour, P.M., Wheatcroft, R., and Chen, S. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Gowanlock, D.W., Mahan, D.C., Jolliff, J.S., Moeller, S.J., and Hill, G.M. 2013. Evaluating the NRC levels of Cu, Fe, Mn, and Zn using organic minerals for grower-finisher swine. J. Anim. Sci. 91, 5680–5686.

    Article  CAS  PubMed  Google Scholar 

  • Hojberg, O., Canibe, N., Poulsen, H.D., Hedemann, M.S., and Jensen, B.B. 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 71, 2267–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y.L., Ashwell, M.S., Fry, R.S., Lloyd, K.E., Flowers, W.L., and Spears, J.W. 2015. Effect of dietary copper amount and source on copper metabolism and oxidative stress of weanling pigs in short-term feeding. J. Anim. Sci. 93, 2948–2955.

    Article  CAS  PubMed  Google Scholar 

  • Jondreville, C., Revy, P.S., and Dourmad, J.Y. 2003. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest. Prod. Sci. 84, 147–156.

    Article  Google Scholar 

  • Jost, T., Lacroix, C., Braegger, C.P., Rochat, F., and Chassard, C. 2014. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16, 2891–2904.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov, S.R. 2005. Ph.D. thesis. Lactobacilli in the porcine intestine: from composition to functionality. Wageningen University, Wageningen, Netherlands.

    Google Scholar 

  • Kumar, V., Kalita, J., Bora, H.K., and Misra, U.K. 2016. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol. Appl. Pharmacol. 293, 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Z.M., Ning, H.F., Bi, J.G., Qiao, J.F., Liu, Z.H., Li, G.H., Wang, Q.S., Wang, S.H., and Ding, Y.F. 2014. Effects of nitrogen fertilization and genotype on rice grain macronutrients and micronutrients. Rice Science 21, 233–242.

    Article  Google Scholar 

  • Liu, J.H., Zhang, M.L., Zhang, R.Y., Zhu, W.Y., and Mao, S.Y. 2016. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb. Biotechnol. 9, 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, L., Wang, R.L., Zhang, Z.J., Steward, F.A., Luo, X.G., and Liu, B. 2010. Effect of dietary supplementation with copper sulfate or tribasic copper chloride on the growth performance, liver copper concentrations of broilers fed in floor pens, and stabilities of vitamin E and phytase in feeds. Biol. Trace. Elem. Res. 138, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Luo, X.G., Ji, F., Lin, Y.X., Steward, F.A., Lu, L., Liu, B., and Yu, S.X. 2005. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult. Sci. 84, 888–893.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y.L., Zanton, G.I., Zhao, J., Wedekind, K., Escobar, J., and Vazquez-Anon, M. 2015. Multitrial analysis of the effects of copper level and source on performance in nursery pigs. J. Anim. Sci. 93, 606–614.

    Article  CAS  PubMed  Google Scholar 

  • Mattie, M.D., McElwee, M.K., and Freedman, J.H. 2008. Mechanism of copper-activated transcription: activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways. J. Mol. Biol. 383, 1008–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavromichalis, I., Hancock, J.D., Kim, I.H., Senne, B.W., Kropf, D.H., Kennedy, G.A., Hines, R.H., and Behnke, K.C. 1999. Effects of omitting vitamin and trace mineral premixes and(or) reducing inorganic phosphorus additions on growth performance, carcass characteristics, and muscle quality in finishing pigs. J. Anim. Sci. 77, 2700–2708.

    Article  CAS  PubMed  Google Scholar 

  • Mei, S.F., Yu, B., Ju, C.F., Zhu, D., and Chen, D.W. 2010. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets. Int. J. Mol. Sci. 9, 378–381.

    Google Scholar 

  • Mori, H., Maruyama, F., Kato, H., Toyoda, A., Dozono, A., Ohtsubo, Y., Nagata, Y., Fujiyama, A., Tsuda, M., and Kurokawa, K. 2014. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Munoz, C., Lopez, M., Olivares, M., Pizarro, F., Arredondo, M., and Araya, M. 2005. Differential response of interleukin-2 production to chronic copper supplementation in healthy humans. Eur. Cytokine Netw. 16, 261–265.

    CAS  PubMed  Google Scholar 

  • Namkung, H., Gong, J., Yu, H., and De Lange, C.F.M. 2006. Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Can. J. Anim. Sci. 86, 511–522.

    Article  CAS  Google Scholar 

  • Novotny, J., Pistl, J., and Kovac, G. 2003. Effects of supplementation of organic-bound trace elements on blood and tissues-Micromineral profile and immune parameters of piglets. Acta Vet.-Beogr. 53, 11–18.

    Article  Google Scholar 

  • Pang, Y., Patterson, J.A., and Applegate, T.J. 2009. The influence of copper concentration and source on ileal microbiota. Poult. Sci. 88, 586–592.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, T.C., Campos, M.M., and Bogo, M.R. 2016. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J. Appl. Toxicol. 36, 876–881.

    Article  CAS  PubMed  Google Scholar 

  • Petta, S., Gastaldelli, A., Rebelos, E., Bugianesi, E., Messa, P., Miele, L., Svegliati-Baroni, G., Valenti, L., and Bonino, F. 2016. Pathophysiology of non alcoholic fatty liver disease. Int. J. Mol. Sci. 17, 1–26.

    Article  Google Scholar 

  • Rajilic-Stojanovic, M., Shanahan, F., Guarner, F., and De Vos, W.M. 2013. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488.

    Article  PubMed  Google Scholar 

  • Reeves, P.G., Nielsen, F.H., and Fahey, G.C.Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.

    CAS  PubMed  Google Scholar 

  • Sanchez, D., Miguel, M., and Aleixandre, A. 2012. Dietary fiber, gut peptides, and adipocytokines. J. Med. Food 15, 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Satokari, R., Fuentes, S., Mattila, E., Jalanka, J., De Vos, W.M., and Arkkila, P. 2014. Fecal transplantation treatment of antibioticinduced, noninfectious colitis and long-term microbiota followup. Case. Rep. Med. 2014, 1–7.

    Article  Google Scholar 

  • Shelton, J.L., Southern, L.L., LeMieux, F.M., Bidner, T.D., and Page, T.G. 2004. Effects of microbial phytase, low calcium and phosphorus, and removing the dietary trace mineral premix on carcass traits, pork quality, plasma metabolites, and tissue mineral content in growing-finishing pigs. J. Anim. Sci. 82, 2630–2639.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K.K., Kumar, M., Kumar, P., Gupta, M.K., Jha, D.K., Kumari, S., Roy, B.K., and Kumar, S. 2012. “Free” copper: a new endogenous chemical mediator of inflammation in birds. Biol. Trace. Elem. Res. 145, 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Li, Y.L., and Hu, C.H. 2013. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl. Clay Sci. 77-78, 52–55.

    Article  CAS  Google Scholar 

  • Turnlund, J.R., Jacob, R.A., Keen, C.L., Strain, J.J., Kelley, D.S., Domek, J.M., Keyes, W.R., Ensunsa, J.L., Lykkesfeldt, J., and Coulter, J. 2004. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 79, 1037–1044.

    CAS  PubMed  Google Scholar 

  • Veum, T.L., Carlson, M.S., Wu, C.W., Bollinger, D.W., and Ellersieck, M.R. 2004. Copper proteinate in weanling pig diets for enhancing growth performance and reducing fecal copper excretion compared with copper sulfate. J. Anim. Sci. 82, 1062–1070.

    Article  CAS  PubMed  Google Scholar 

  • Walter, R.M., Uriuhare, J.Y., Olin, K.L., Oster, M.H., Anawalt, B.D., Critchfield, J.W., and Keen, C.L. 1991. Copper, zinc, manganese, and magnesium status and complications of diabetes-mellitus. Diabetes Care 14, 1050–1056.

    Article  PubMed  Google Scholar 

  • Wang, M.Q., Du, Y.J., Wang, C., Tao, W.J., He, Y.D., and Li, H. 2012. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol. Trace. Elem. Res. 149, 184–189.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X.Z., Zhang, T.T., Guo, J.G., Liu, Z., Yang, F.H., and Gao, X.H. 2015. Copper bioavailability, blood parameters, and nutrient balance in mink. J. Anim. Sci. 93, 176–184.

    Article  CAS  PubMed  Google Scholar 

  • Xia, M.S., Hu, C.H., and Xu, Z.R. 2005. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed. Sci. Technol. 118, 307–317.

    Article  CAS  Google Scholar 

  • Xue, J., Li, H., Deng, X., Ma, Z., Fu, Q., and Ma, S. 2015. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol. Biochem. Behav. 134, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Yang, T.H., Yuan, T.H., Hwang, Y.H., Lian, I.B., Meng, M., and Su, C.C. 2015. Increased inflammation in rheumatoid arthritis patients living where farm soils contain high levels of copper. J. Formos. Med. Assoc. 15, 1–6.

    Google Scholar 

  • Yu, S.G., Vandenberg, G.J., and Beynen, A.C. 1995. Copper-metabolism in analbuminemic rats fed a high-copper diet. Comp. Biochem. Phys. A 110, 259–266.

    Article  CAS  Google Scholar 

  • Zhou, W., Kornegay, E.T., van Laar, H., Swinkels, J.W., Wong, E.A., and Lindemann, M.D. 1994. The role of feed consumption and feed efficiency in copper-stimulated growth. J. Anim. Sci. 72, 2385–2394.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yao.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zheng, W., Guo, R. et al. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol. 55, 694–702 (2017). https://doi.org/10.1007/s12275-017-6627-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6627-9

Keywords

Navigation