Skip to main content
Log in

A long/short-range interconnected carbon with well-defined mesopore for high-energy-density supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Amorphous carbon derived from biomass unusually combines the merits of large specific surface area and abundant micropores, offering massive anchoring points for ion adsorption in electrolyte. Nevertheless, the short-range ordered structure in amorphous carbon hinders the fast electron transfer. Conversely, graphitic carbon with long-range ordered structure is beneficial for electron transfer. Thus, a low-cost strategy is required to marry hierarchical porous structure with long-range ordered structure, resulting in a long/short-range interconnected porous carbon and then leading to fast ion and electron transfer. Herein, we modified the solid-phase conversion process of biomass by employing the features of liquid-phase carbonization for petroleum asphalt. With the assistance of asphalt, the large specific surface area (>2,000 m2·g−1), high ratio of mesopores (ca. 60%) together with long-range ordered structure are in-situ created in as-made porous carbon. Thanks to the well configured structure in small scale, the as-made co-converted carbon can be operated in high-viscosity EMIMBF4 electrolyte with a superior capacitance (315 F·g−1@1 A·g−1). Besides, the as-assembled symmetric supercapacitor can deliver a super-high specific energy of 174 Wh·kg−1@2.0 kW·kg−1. This work provides a new version for designing highly porous biomass-derived carbon with long/short-range alternating structure at molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1702545.

    Article  Google Scholar 

  2. Chen, L.; Lian, C.; Jiang, H.; Chen, L. X.; Yan, J.; Liu, H. L.; Li, C. Z. Dual-conductive N, S co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor. Chem. Eng. Sci. 2020, 217, 115496.

    Article  CAS  Google Scholar 

  3. Sevilla, M.; Diez, N.; Ferrero, G. A.; Fuertes, A. B. Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Mater. 2019, 18, 356–365.

    Article  Google Scholar 

  4. Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

    Article  Google Scholar 

  5. Long, C. L.; Qi, D. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014, 24, 3953–3961.

    Article  CAS  Google Scholar 

  6. Cheng, H. Y.; Meng, J. K.; Wu, G.; Chen, S. Hierarchical micromesoporous carbon-framework-based hybrid nanofibres for high-density capacitive energy storage. Angew. Chem., Int. Ed. 2019, 58, 17465–17473.

    Article  CAS  Google Scholar 

  7. Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987.

    Article  CAS  Google Scholar 

  8. Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

    Article  CAS  Google Scholar 

  9. Ma, H. Y.; Chen, H. W.; Wu, M. M.; Chi, F. Y.; Liu, F.; Bai, J. X.; Cheng, H. H.; Li, C.; Qu, L. T. Maximization of spatial charge density: An approach to ultrahigh energy density of capacitive charge storage. Angew. Chem., Int. Ed. 2020, 59, 14541–14549.

    Article  CAS  Google Scholar 

  10. Li, C.; Zhang, X.; Wang, K.; Sun, X. Z.; Liu, G. H.; Li, J. T.; Tian, H. F.; Li, J. Q.; Ma, Y. W. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv. Mater. 2017, 29, 1604690.

    Article  Google Scholar 

  11. Chang, P. P.; Matsumura, K.; Zhang, J. Z.; Qi, J.; Wang, C. Y.; Kinumoto, T.; Tsumura, T.; Chen, M. M.; Toyoda, M. 2D porous carbon nanosheets constructed using few-layer graphene sheets by a “medium-up” strategy for ultrahigh power-output EDLCs. J. Mater. Chem. A 2018, 6, 10331–10339.

    Article  CAS  Google Scholar 

  12. Wang, J.; Tang, J.; Xu, Y. L.; Ding, B.; Chang, Z.; Wang, Y.; Hao, X. D.; Dou, H.; Kim, J. H.; Zhang, X. G. et al. Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 2016, 28, 232–240.

    Article  CAS  Google Scholar 

  13. Gong, Y. N.; Li, D. L.; Luo, C. Z.; Fu, Q.; Pan C X. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017, 19, 4132–4140.

    Article  CAS  Google Scholar 

  14. Guan, T.; Li, K.; Zhao, J.; Zhao, R.; Zhang, G.; Zhang, D.; Wang, J. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 15869–15878.

    Article  CAS  Google Scholar 

  15. Wang, L. J.; El-Kady, M. F.; Dubin, S.; Hwang, J. Y.; Shao, Y. L.; Marsh, K.; Mcverry, B.; Kowal, M. D.; Mousavi, M. F.; Kaner, R. B. Flash converted graphene for ultra-high power supercapacitors. Adv. Energy Mater. 2015, 5, 1500786.

    Article  Google Scholar 

  16. Zhu, X. Q.; Yu, S.; Xu, K. T.; Zhang, Y.; Zhang, L. M.; Lou, G. B.; Wu, Y. T.; Zhu, E. H.; Chen, H.; Shen, Z. H. et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 2018, 181, 36–45.

    Article  CAS  Google Scholar 

  17. Chen, C.; Yu, D. F.; Zhao, G. Y.; Du, B. S.; Tang, W.; Sun, L.; Sun, Y.; Besenbacher, F.; Yu, M. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for highperformance supercapacitors. Nano Energy 2016, 27, 377–389.

    Article  CAS  Google Scholar 

  18. Long, C. L.; Chen, X.; Jiang, L. L.; Zhi, L. J.; Fan, Z. J. Porous layerstacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 2015, 12, 141–151.

    Article  CAS  Google Scholar 

  19. Wu, X. L.; Jiang, L. L.; Long, C. L.; Fan, Z. J. From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy 2015, 13, 527–536.

    Article  CAS  Google Scholar 

  20. Jiang, F.; Yao, Y. G.; Natarajan, B.; Yang, C. P.; Gao, T. T.; Xie, H.; Wang, Y. L.; Xu, L.; Chen, Y. K.; Gilman, J. et al. Ultrahigh-temperature conversion of biomass to highly conductive graphitic carbon. Carbon 2019, 144, 241–248.

    Article  CAS  Google Scholar 

  21. Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today. 2019, 23, 87–104.

    Article  CAS  Google Scholar 

  22. Zhang, R. P.; Li, W. C.; Hao, G. P.; Lu, A. H. Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons. Nano Res. 2021, DOI: https://doi.org/10.1007/s12274-021-3425-9.

  23. Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Qiu, J. S. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 2014, 70, 130–141.

    Article  CAS  Google Scholar 

  24. Rey-Raap, N.; Enterría M.; Martins, J. I.; Pereira, M. F. R.; Figueiredo, J. L. Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications. ACS Appl. Mater. Interfaces. 2019, 11, 6066–6077.

    Article  CAS  Google Scholar 

  25. Pan, Z. H.; Liu, M. N.; Yang, J.; Qiu, Y. C.; Li, W. F.; Xu, Y.; Zhang, X. Y.; Zhang, Y. G. High electroactive material loading on a carbon nanotube@3D graphene aerogel for High-performance flexible all-solid-state asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1701122.

    Article  Google Scholar 

  26. Guardia, L.; Suárez, L.; Querejeta, N.; Vretenár, V.; Kotrusz, P.; Skákalová, V.; Centeno, T. A. Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors. Electrochim. Acta 2019, 298, 910–917.

    Article  CAS  Google Scholar 

  27. Xiong, C. L.; Zou, Y. B.; Peng, Z. Y.; Zhong, W. B. Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors. Nanoscale 2019, 11, 7304–7316.

    Article  CAS  Google Scholar 

  28. Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M. D.; Qiu, J. S. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 2015, 5, 1401761.

    Article  Google Scholar 

  29. Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

    Article  Google Scholar 

  30. Shang, T. X.; Xu, Y.; Li, P.; Han, J. W.; Wu, Z. T.; Tao, Y.; Yang, Q. H. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 2020, 70, 104531.

    Article  CAS  Google Scholar 

  31. Hérou, S.; Ribadeneyra, M. C.; Schlee, P.; Luo, H.; Tanase, L. C.; Roßberg, C.; Titirici, M. The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors. J. Energy Chem. 2021, 53, 36–48.

    Article  Google Scholar 

  32. Cho, K. G.; Kim, H. S.; Jang, S. S.; Kyung, H.; Kang, M. S.; Lee, K. H.; Yoo, W. C. Optimizing electrochemically active surfaces of carbonaceous electrodes for ionogel based supercapacitors. Adv. Funct. Mater. 2020, 30, 2002053.

    Article  CAS  Google Scholar 

  33. Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555.

    Article  CAS  Google Scholar 

  34. Ghosh, S.; Barg, S.; Jeong, S. M.; Ostrikov, K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 2020, 10, 2001239.

    Article  CAS  Google Scholar 

  35. He, Y. T.; Zhang, Y. H.; Li, X. F.; Lv, Z.; Wang, X. J.; Liu, Z. G.; Huang, X. Q. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 2018, 282, 618–625.

    Article  CAS  Google Scholar 

  36. Yan, R. Y.; Antonietti, M.; Oschatz, M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy Mater. 2018, 8, 1800026.

    Article  Google Scholar 

  37. Dong, S. A.; He, X. J.; Zhang, H. F.; Xie, X. Y.; Yu, M. X.; Yu, C.; Xiao, N.; Qiu, J. S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960.

    Article  CAS  Google Scholar 

  38. Zhang, L.; Yang, X.; Zhang, F.; Long, G. K.; Zhang, T. F.; Leng, K.; Zhang, Y. W.; Huang, Y.; Ma, Y. F.; Zhang, M. T. et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 2013, 135, 5921–5929.

    Article  CAS  Google Scholar 

  39. Deng, X. Y.; Li, J. J.; Zhu, S.; Ma, L. Y.; Zhao, N. Q. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater. 2019, 23, 491–498.

    Article  Google Scholar 

  40. Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 2017, 29, 1604569.

    Article  Google Scholar 

  41. Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S. et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993–1998.

    Article  CAS  Google Scholar 

  42. Nomura, K.; Nishihara, H.; Kobayashi, N.; Asada, T.; Kyotani, T. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 2019, 12, 1542–1549.

    Article  CAS  Google Scholar 

  43. Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Edgeenriched porous graphene nanoribbons for high energy density supercapacitors. J. Mater. Chem. A 2014, 2, 7484–7490.

    Article  CAS  Google Scholar 

  44. Huo, S. L.; Liu, M. Q.; Wu, L. L.; Liu, M. J.; Xu, M.; Ni, W.; Yan, Y. M. Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. J. Power Sources 2019, 414, 383–392.

    Article  CAS  Google Scholar 

  45. Song, B.; Zhao, J. X.; Wang, M. J.; Mullavey, J.; Zhu, Y. T.; Geng, Z. S.; Chen, D. C.; Ding, Y.; Moon, K. S.; Liu, M. L. et al. Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application. Nano Energy 2017, 31, 183–193.

    Article  CAS  Google Scholar 

  46. Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 51872035 and 22078052), the Talent Program of Rejuvenation of Liaoning (No. XLYC1807002), and the Innovation Program of Dalian City (No. 2019RJ03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Yu or Jieshan Qiu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Yu, C., Guo, W. et al. A long/short-range interconnected carbon with well-defined mesopore for high-energy-density supercapacitors. Nano Res. 15, 1399–1408 (2022). https://doi.org/10.1007/s12274-021-3676-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3676-5

Keywords

Navigation