Skip to main content
Log in

Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Functional materials displaying large ultrafast third-order optical nonlinearities across a wide spectral region and broad temporal domain are required for all-optical signal processing. Particularly desirable is nonlinear optical (NLO) activity at near-infrared (NIR) wavelengths with femtosecond pulses. Herein the first triply-fused porphyrin dimer (TFP)-functionalized single-walled carbon nanotube (SWCNT) nanohybrid was successfully constructed by covalently grafting TFPs onto SWCNT. The results of Z-scan techniques demonstrate that the newly obtained TFP-SWCNT nanohybrid was found with a strong NLO performance under both nanosecond and femtosecond irradiation. In the nanosecond regime, an enhancement in optical limiting (OL) of the TFP-SWCNT nanohybrid is seen at 532 nm when compared with the performance of porphyrin monomer-functionalized SWCNT nanohybrid Por-SWCNT. Under femtosecond irradiation, the TFP-SWCNT nanohybrid exhibits a particularly strong OL effect with a giant two-photon absorption (TPA) cross section value (ca. 15,500 GM) at 800 nm pulses that mainly stems from intense TPA of TFP, in sharp contrast to the Por-SWCNT nanohybrid which exhibits only saturable absorption under identical irradiation. These results demonstrate that the newly-developed TFP-SWCNT nanohybrid is a very promising OL candidate for practical applications across wide spectral and temporal domains, and that covalently functionalizing carbon-based materials with triply-fused chromophores may be a useful approach to engineering adaptable photonic devices with broad-ranging NLO activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yadav, R. K.; Baeg, J. O.; Oh, G. H.; Park, N. J.; Kong, K. J.; Kim, J. H.; Hwang, D. W.; Biswas, S. K. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461.

    Article  CAS  Google Scholar 

  2. Imahori, H.; Fukuzumi, S. Porphyrin- and fullerene-based molecular photovoltaic devices. Adv. Func. Mater. 2004, 14, 525–536.

    Article  CAS  Google Scholar 

  3. Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 6595–6599.

    Article  CAS  Google Scholar 

  4. Cao, Y.; Dong, H. F.; Yang, Z.; Zhong, X. M.; Chen, Y.; Dai, W. H.; Zhang, X. J. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl. Mater. Interfaces 2017, 9, 159–166.

    Article  CAS  Google Scholar 

  5. Yu, X. H.; Gao, D.; Gao, L. Q.; Lai, J. H.; Zhang, C. R.; Zhao, Y.; Zhong, L. J.; Jia, B.; Wang, F.; Chen, X. Y. et al. Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes. ACS Nano 2017, 11, 10147–10158.

    Article  CAS  Google Scholar 

  6. Xu, T.; Zhao, S. J.; Lin, C. W.; Zheng, X. L.; Lan, M. H. Recent advances in nanomaterials for sonodynamic therapy. Nano Res. 2020, 13, 2898–2908.

    Article  CAS  Google Scholar 

  7. Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev. 2018, 375, 489–513.

    Article  CAS  Google Scholar 

  8. Menon, A.; Munich, P. W.; Wagner, P.; Officer, D. L.; Guldi, D. M. Amphiphilic zinc porphyrin single-walled carbon nanotube hybrids: Efficient formation and excited state charge transfer studies. Small 2021, 2005648.

  9. Limosani, F.; Kaur, R.; Cataldo, A.; Bellucci, S.; Micciulla, F.; Zanoni, R.; Lembo, A.; Wang, B. Z.; Pizzoferrato, R.; Guldi, D. M. et al. Designing cascades of electron transfer processes in multicomponent graphene conjugates. Angew. Chem., Int. Ed. 2020, 59, 23706–23715.

    Article  CAS  Google Scholar 

  10. Liu, Z. B.; Tian, J. G.; Guo, Z.; Ren, D. M.; Du, F.; Zheng, J. Y.; Chen, Y. S. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv. Mater. 2008, 20, 511–515.

    Article  CAS  Google Scholar 

  11. Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.

    Article  Google Scholar 

  12. Barbosa Neto, N. M.; De Boni, L.; Rodrigues, J. J. Jr.; Misoguti, L.; Mendonca, C. R.; Dinelli, L. R.; Batista, A. A.; Zilio, S. C. Dynamic saturable optical nonlinearities in free base tetrapyridylporphyrin. J. Porphyr. Phthalocya. 2003, 7, 452–456.

    Article  CAS  Google Scholar 

  13. Wang, A. J.; Yu, W.; Xiao, Z. G.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. A 1, 3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push-pull motif. Nano Res. 2015, 8, 870–886.

    Article  CAS  Google Scholar 

  14. Blau, W. J.; Byrne, H. J.; Dennis, W. M.; Kelly, J. M. Reverse saturable absorption in tetraphenylporphyrins. Opt. Comm. 1985, 56, 25–29.

    Article  CAS  Google Scholar 

  15. Su, W. J.; Cooper, T. M.; Brant, M. C. Investigation of reversesaturable absorption in brominated porphyrins. Chem. Mater. 1998, 10, 1212–1213.

    Article  CAS  Google Scholar 

  16. Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.

    Article  CAS  Google Scholar 

  17. Rao, D. N. Excited state dynamics in porphyrins in relevance to third-order nonlinearity and optical limiting. Opt. Mater. 2003, 21, 45–49.

    Article  Google Scholar 

  18. Barbosa Neto, N. M.; De Boni, L.; Mendonça, C. R.; Misoguti, L.; Queiroz, S. L.; Dinelli, L. R.; Batista, A. A.; Zilio, S. C. Nonlinear absorption dynamics in tetrapyridyl metalloporphyrins. J. Phys. Chem. B 2005, 109, 17340–17345.

    Article  CAS  Google Scholar 

  19. Zieba, R.; Desroches, C.; Chaput, F.; Carlsson, M.; Eliasson, B.; Lopes, C.; Lindgren, M.; Parola, S. Preparation of functional hybrid glass material from platinum (II) complexes for broadband nonlinear absorption of light. Adv. Funct. Mater. 2009, 19, 235–241.

    Article  CAS  Google Scholar 

  20. De Geyter, B.; Houtepen, A. J.; Carrillo, S.; Geiregat, P.; Gao, Y. N.; ten Cate, S.; Schins, J. M.; Van Thourhout, D.; Delerue, C.; Siebbeles, L. D. A. et al. Broadband and picosecond intraband absorption in lead-based colloidal quantum dots. ACS Nano 2012, 6, 6067–6074.

    Article  CAS  Google Scholar 

  21. Zhang, R.; Zhang, Y. X.; Yu, H. H.; Zhang, H. J.; Yang, R. L.; Yang, B. C.; Liu, Z. Y.; Wang, J. Y. Broadband black phosphorus optical modulator in the spectral range from visible to mid-infrared. Adv. Opt. Mater. 2015, 3, 1787–1792.

    Article  CAS  Google Scholar 

  22. Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.

    Article  Google Scholar 

  23. Wang, K. P.; Zhang, X. Y.; Kislyakov, I. M.; Dong, N. N.; Zhang, S. F.; Wang, G. Z.; Fan, J. T.; Zou, X.; Du, J.; Leng, Y. X. et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 2019, 10, 3985.

    Article  Google Scholar 

  24. Quintana, C.; Morshedi, M.; Du, J.; Morrall, J. P. L.; Zarçba, J. K.; Samoc, M.; Cifuentes, M. P.; Humphrey, M. G. Hybrids of gold nanoparticles and oligo(p-phenyleneethynylene)s end-functionalized with alkynylruthenium groups: outstanding two-photon absorption in the second biological window. Nano Res. 2020, 13, 2755–2762.

    Article  CAS  Google Scholar 

  25. Shi, L. M.; Nguyen, C.; Daurat, M.; Dhieb, A. C.; Smirani, W.; Blanchard-Desce, M.; Gary-Bobo, M.; Mongin, O.; Paul-Roth, C.; Paul, F. Biocompatible conjugated fluorenylporphyrins for two-photon photodynamic therapy and fluorescence imaging. Chem. Commun. 2019, 55, 12231–12234.

    Article  CAS  Google Scholar 

  26. Li, J. L.; Gu, M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials 2010, 31, 9492–9498.

    Article  CAS  Google Scholar 

  27. Zhang, P. S.; Jiang, X. F.; Nie, X. Z.; Huang, Y.; Zeng, F.; Xia, X. T.; Wu, S. Z. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo. Biomaterials 2016, 80, 46–56.

    Article  CAS  Google Scholar 

  28. Marandi, A.; Wang, Z.; Takata, K.; Byer, R. L.; Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photonics 2014, 8, 937–942.

    Article  CAS  Google Scholar 

  29. Lee, K. K. C.; Herman, P. R.; Shoa, T.; Haque, M.; Madden, J. D. W.; Yang, V. X. D. Microstructuring of polypyrrole by maskless direct femtosecond laser ablation. Adv. Mater. 2012, 24, 1243–1246.

    Article  CAS  Google Scholar 

  30. Bouit, P. A.; Wetzel, G.; Berginc, G.; Loiseaux, B.; Toupet, L.; Feneyrou, P.; Bretonniere, Y.; Kamada, K.; Maury, O.; Andraud, C. Near IR nonlinear absorbing chromophores with optical limiting properties at telecommunication wavelengths. Chem. Mater. 2007, 19, 5325–5335.

    Article  CAS  Google Scholar 

  31. Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.; Thompson, M. E. Fused pyrene-diporphyrins: Shifting near-infrared absorption to 1.5 µm and beyond. Angew. Chem., Int. Ed. 2010, 49, 5523–5526.

    Article  CAS  Google Scholar 

  32. Kim, D. Y.; Ahn, T. K.; Kwon, J. H.; Kim, D.; Ikeue, T.; Aratani, N.; Osuka, A.; Shigeiwa, M.; Maeda, S. Large two-photon absorption (TPA) cross-section of directly linked fused diporphyrins. J. Phys. Chem. A 2005, 109, 2996–2999.

    Article  CAS  Google Scholar 

  33. Zhang, X. L.; Liu, Z. B.; Zhao, X.; Yan, X. Q.; Li, X. C.; Tian, J. G. Optical limiting effect and ultrafast saturable absorption in a solid PMMA composite containing porphyrin-covalently functionalized multi-walled carbon nanotubes. Opt. Express 2013, 21, 25277–25284.

    Article  Google Scholar 

  34. Krishna, M. B. M.; Venkatramaiah, N.; Venkatesan, R.; Rao, D. N. Synthesis and structural, spectroscopic and nonlinear optical measurements of graphene oxide and its composites with metal and metal free porphyrins. J. Mater. Chem. 2012, 22, 3059–3068.

    Article  Google Scholar 

  35. Tsuda, A.; Osuka, A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science 2001, 293, 79–82.

    Article  CAS  Google Scholar 

  36. Tsuda, A.; Furuta, H.; Osuka, A. Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. J. Am. Chem. Soc. 2001, 123, 10304–10321.

    Article  CAS  Google Scholar 

  37. Tsuda, A.; Osuka, A. Discrete conjugated porphyrin tapes with an exceptionally small bandgap. Adv. Mater. 2002, 14, 75–79.

    Article  CAS  Google Scholar 

  38. Ahn, T. K.; Kim, K. S.; Kim, D. Y.; Noh, S. B.; Aratani, N.; Ikeda, C.; Osuka, A.; Kim, D. Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control. J. Am. Chem. Soc. 2006, 128, 1700–1704.

    Article  CAS  Google Scholar 

  39. Jin, L. M.; Chen, L.; Yin, J. J.; Guo, C. C.; Chen, Q. Y. A facile and potent synthesis of meso, meso-linked porphyrin arrays using iodine(III) reagents. Eur. J. Org. Chem. 2005, 2005, 3994–4001.

    Article  Google Scholar 

  40. Sahoo, A. K.; Nakamura, Y.; Aratani, N.; Kim, K. S.; Noh, S. B.; Shinokubo, H.; Kim, D.; Osuka, A. Synthesis of brominated directly fused diporphyrins through gold(III)-mediated oxidation. Org. Lett. 2006, 8, 4141–4144.

    Article  CAS  Google Scholar 

  41. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B. et al. Fullerene pipes. Science 1998, 280, 1253–1256.

    Article  CAS  Google Scholar 

  42. Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Elect. 1990, 26, 760–769.

    Article  CAS  Google Scholar 

  43. Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.

    Article  CAS  Google Scholar 

  44. Zhang, J.; Zou, H. L.; Qing, Q.; Yang, Y. L.; Li, Q. W.; Liu, Z. F.; Guo, X. Y.; Du, Z. L. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 2003, 107, 3712–3718.

    Article  CAS  Google Scholar 

  45. Wang, A. J.; Fang, Y.; Long, L. L.; Song, Y. L.; Yu, W.; Zhao, W.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. Facile synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes. Chem. Eur. J. 2013, 19, 14159–14170.

    Article  CAS  Google Scholar 

  46. Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

    Article  CAS  Google Scholar 

  47. Guo, Z.; Du, F.; Ren, D. M.; Chen, Y. S.; Zheng, J. Y.; Liu, Z. B.; Tian, J. G. Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor-acceptor nanohybrid. J. Mater. Chem. 2006, 16, 3021–3030.

    Article  CAS  Google Scholar 

  48. Wang, A. J.; Song, J. B.; Huang, Z. P.; Song, Y. L.; Yu, W.; Dong, H. L.; Hu, W. P.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Res. 2016, 9, 458–472.

    Article  CAS  Google Scholar 

  49. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257–259.

    Article  CAS  Google Scholar 

  50. De Miguel, G.; Wielopolski, M.; Schuster, D. I.; Fazio, M. A.; Lee, O. P.; Haley, C. K.; Ortiz, A. L.; Echegoyen, L.; Clark, T.; Guldi, D. M. Triazole bridges as versatile linkers in electron donor-acceptor conjugates. J. Am. Chem. Soc. 2011, 133, 13036–13054.

    Article  CAS  Google Scholar 

  51. Reekie, T. A.; Sekita, M.; Urner, L. M.; Bauroth, S.; Ruhlmann, L.; Gisselbrecht, J. P.; Boudon, C.; Trapp, N.; Clark, T.; Guldi, D. M. et al. Porphyrin donor and tunable push-pull acceptor conjugates-experimental investigation of Marcus theory. Chem. Eur. J. 2017, 23, 6357–6369.

    Article  CAS  Google Scholar 

  52. Tian, S. f.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    Article  CAS  Google Scholar 

  53. Wang, A. J.; Fang, Y.; Yu, W.; Long, L. L.; Song, Y. L.; Zhao, W.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. Allyloxyporphyrin-functionalized multiwalled carbon nanotubes: synthesis by radical polymerization and enhanced optical-limiting properties. Chem. Asian J. 2014, 9, 639–648.

    Article  CAS  Google Scholar 

  54. Dyke, C. A.; Stewart, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett 2004, 35, 155–160.

    Google Scholar 

  55. Spampinato, V.; Ceccone, G.; Giordani, S. Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 2015, 10, 019006.

    Article  Google Scholar 

  56. Bensghaïer, A.; Salmi, Z.; Le Droumaguet, B.; Mekki, A.; Mohamed, A. A.; Beji, M.; Chehimi, M. M. Diazonium interface chemistry and click polymerization: A novel route for carbon nanotube-polytriazole nanocomposites. Surf. Interface Anal. 2016, 48, 509–513.

    Article  Google Scholar 

  57. Karousis, N.; Tagmatarchis, N.; Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010, 110, 5366–5397.

    Article  CAS  Google Scholar 

  58. Saxena, S.; Saini, G. S. S.; Verma, A. L. Co-TPP functionalized carbon nanotube composites for detection of nitrobenzene and chlorobenzene vapours. Bull. Mater. Sci. 2015, 38, 443–449.

    Article  CAS  Google Scholar 

  59. Tsuda, A.; Furuta, H.; Osuka, A. Completely fused diporphyrins and triporphyrin. Angew. Chem., Int. Ed. 2000, 39, 2549–2552.

    Article  CAS  Google Scholar 

  60. Tanaka, T.; Osuka, A. Triply linked porphyrinoids. Chem. Eur. J. 2018, 24, 17188–17200.

    Article  CAS  Google Scholar 

  61. Clavian, L. M.; Rajesh Kumar, P. C.; Anil Kumar, K. V.; Rao, D. N.; Shihab, N. K.; Ganesh, S. Enhanced third order optical nonlinearity in ultrathin amorphous film of tetraphenyl-porphyrin in picosecond regime. Opt. Laser Technol. 2019, 119, 105642.

    Article  CAS  Google Scholar 

  62. Mishra, S. R.; Rawat, H. S.; Mehendale, S. C.; Rustagi, K. C.; Sood, A. K.; Bandyopadhyay, R.; Govindaraj, A.; Rao, C. N. R. Optical limiting in single-walled carbon nanotube suspensions. Chem. Phys. Lett. 2000, 317, 510–514.

    Article  CAS  Google Scholar 

  63. Vivien, L.; Lancon, P.; Riehl, D.; Hache, F.; Anglaret, E. Carbon nanotubes for optical limiting. Carbon 2002, 40, 1789–1797.

    Article  CAS  Google Scholar 

  64. Chen, Y.; Lin, Y.; Liu, Y.; Doyle, J.; He, N.; Zhuang, X. D.; Bai, J. R.; Blau, W. J. Carbon nanotube-based functional materials for optical limiting. J. Nanosci. Nanotechnol. 2007, 7, 1268–1283.

    Article  CAS  Google Scholar 

  65. Zhou, J. F.; Gai, L. Z.; Zhou, Z. K.; Yang, W.; Mack, J.; Xu, K. J.; Zhao, J. Z.; Zhao, Y.; Qiu, H. L.; Chan, K. S. et al. Rational design of emissive NIR-absorbing chromophores: RhIII porphyrin-aza-BODIPY conjugates with orthogonal metal-carbon bonds. Chem. Eur. J. 2016, 22, 13201–13209.

    Article  CAS  Google Scholar 

  66. Bonifazi, D.; Scholl, M.; Song, F. Y.; Echegoyen, L.; Accorsi, G.; Armaroli, N.; Diederich, F. Exceptional redox and photophysical properties of a triply fused diporphyrin-C60 conjugate: Novel scaffolds for multicharge storage in molecular scale electronics. Angew. Chem., Int. Ed. 2003, 115, 5116–5120.

    Article  Google Scholar 

  67. Kim, D.; Osuka, A. Photophysical properties of directly linked linear porphyrin arrays. J. Phys. Chem. A 2003, 107, 8791–8816.

    Article  CAS  Google Scholar 

  68. Krishna, M. B. M.; Venkatramaiah, N.; Rao, D. N. Optical transmission control in graphene oxide and its organic composites with ultrashort laser pulses. J. Opt. 2014, 16, 015205.

    Article  Google Scholar 

  69. Lauret, J. S.; Voisin, C.; Cassabois, G.; Tignon, J.; Delalande, C.; Roussignol, P.; Jost, O.; Capes, L. Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime. Appl. Phys. Lett. 2004, 85, 3572–3574.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 51432006), the Ministry of Science and Technology of China for the International Science Linkages Program (No. 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (No. IRT14R23), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (No. B13025), and the Innovation Program of Shanghai Municipal Education Commission. M. G. H thanks the Australian Research Council (No. DP170100411) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Electronic supplementary material

12274_2021_3664_MOESM1_ESM.pdf

Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Ye, J., Li, H. et al. Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid. Nano Res. 15, 1355–1365 (2022). https://doi.org/10.1007/s12274-021-3664-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3664-9

Keywords

Navigation