Skip to main content
Log in

Enhanced photo-driven ion pump through silver nanoparticles decorated graphene oxide membranes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biology systems harvest solar energy to regulate ions and molecules precisely across cell membrane that is essential to maintain their life sustainability. Recently, artificial light-driven directional ion transport through graphene oxide membranes has been established, where the membrane converts light power into a transmembrane motive force. Herein, we report a silver nanoparticles decorated graphene oxide membranes for enhanced photo-driven ionic transport. Asymmetric light stimulated charge carrier dynamics, such as advanced light absorption efficiency, extended lifetime and efficient separation of photo-excited charge carriers, are account for the ion-driven force enhancement. Based on metal nanoparticles decoration, the concept of the guest-interactions of plasmon-enhanced photo-driven ion transport in two-dimentional layered membranes will stimulate broad researches in sensing, energy storage and conversion and water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gadsby, D. C. Ion channels versus ion pumps: The principal difference, in principle. Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352.

    Article  CAS  Google Scholar 

  2. Krause, G. H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Phys. Plant Mol. Biol. 1991, 42, 313–349.

    Article  CAS  Google Scholar 

  3. Heberle, J. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta. 2000, 1458, 135–147.

    Article  CAS  Google Scholar 

  4. Lu, K.; Shen, D. L.; Dong, S. P.; Chen, C. Y.; Lin, S. J.; Lu, S.; Xing, B. S.; Mao, L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020, 13, 3198–3205.

    Article  CAS  Google Scholar 

  5. Steinberg-Yfrach, G.; Rigaud, J. L.; Durantini, E. N.; Moore, A. L.; Gust, D.; Moore, T. A. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 1998, 392, 479–482.

    Article  CAS  Google Scholar 

  6. Tributsch, H. Light driven proton pumps. Ionics 2000, 6, 161–171.

    Article  CAS  Google Scholar 

  7. Bhosale, S.; Sisson, A. L.; Talukdar, P.; Fürstenberg, A.; Banerji, N.; Vauthey, E.; Bollot, G.; Mareda, J.; Röger, C.; Würthner, F. et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science 2006, 313, 84–86.

    Article  CAS  Google Scholar 

  8. Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

    Article  CAS  Google Scholar 

  9. Bennett, I. M.; Farfano, H. M. V.; Bogani, F.; Primak, A.; Liddell, P. A.; Otero, L.; Sereno, L.; Silber, J. J.; Moore, A. L.; Moore, T. A. et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 2002, 420, 398–401.

    Article  CAS  Google Scholar 

  10. Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

    Article  CAS  Google Scholar 

  11. Anothumakkool, B.; Guyomard, D.; Gaubicher, J.; Madec, L. Interest of molecular functionalization for electrochemical storage. Nano Res. 2017, 10, 4175–4200.

    Article  CAS  Google Scholar 

  12. Yang, J. L.; Liu, P. C.; Li, L. S.; Tang, Z. Y. Light-driven active ion transport. Chem.-Eur. J. 2020, 26, 13748–13753.

    Article  CAS  Google Scholar 

  13. Yang, J. L.; Zhang, X. P.; Chen, F. X.; Jiang, L. Geometry modulation of ion diffusion through layered asymmetric graphene oxide membranes. Chem. Commun. 2019, 55, 3140–3143.

    Article  CAS  Google Scholar 

  14. Yeh, C. N.; Raidongia, K.; Shao, J. J.; Yang, Q. H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.

    Article  CAS  Google Scholar 

  15. Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

    Article  CAS  Google Scholar 

  16. Coleman, M.; Tang, X. W. Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes. Nano Res. 2015, 8, 1128–1138.

    Article  CAS  Google Scholar 

  17. Lohrasebi, A.; Rikhtehgaran, S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 2018, 11, 2229–2236.

    Article  CAS  Google Scholar 

  18. Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

    Article  Google Scholar 

  19. Feng, Y. P.; Dai, H. Y.; Chen, J. J.; Kong, X.; Yang, J. L.; Jiang, L. Geometric structure-guided photo-driven ion current through asymmetric graphene oxide membranes. J. Mater. Chem. A 2019, 7, 20182–20186.

    Article  CAS  Google Scholar 

  20. Gengler, R. Y. N.; Badali, D. S.; Zhang, D. F.; Dimos, K.; Spyrou, K.; Gournis, D.; Miller, R. J. D. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 2013, 4, 2560.

    Article  Google Scholar 

  21. Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X. Y. Hot-electron transfer from semiconductor nanocrystals. Science 2010, 328, 1543–1547.

    Article  CAS  Google Scholar 

  22. Li, X. Y.; Lao, J. C.; Li, G. J.; Song, J.; Luo, J. Y. A bio-inspired transpiration ion pump based on MXene. Mater. Chem. Front. 2020, 4, 3361–3367.

    Article  CAS  Google Scholar 

  23. Berini, P.; De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 2012, 6, 16–24.

    Article  CAS  Google Scholar 

  24. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

    Article  CAS  Google Scholar 

  25. Mueller, N. S.; Okamura, Y.; Vieira, B. G. M.; Juergensen, S.; Lange, H.; Barros, E. B.; Schulz, F.; Reich, S. Deep strong light-matter coupling in plasmonic nanoparticle crystals. Nature 2020, 583, 780–784.

    Article  CAS  Google Scholar 

  26. Liang, H. C.; Liu, X. Y.; Gao, D. L.; Ni, J. F.; Li, Y. Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Res. 2017, 10, 3690–3697.

    Article  CAS  Google Scholar 

  27. Lee, K. J.; Park, C.; Jin, H. J.; Shin, G. H.; Choi, S. Y. Atomically thin heterostructure with gap-mode plasmon for overcoming tradeoff between photoresponsivity and response time. Nano Res. 2021, 14, 1305–1310.

    Article  CAS  Google Scholar 

  28. Lim, S. P.; Pandikumar, A.; Lim, H. N.; Ramaraj, R.; Huang, N. M. Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci. Rep. 2015, 5, 11922.

    Article  Google Scholar 

  29. Ferry, V. E.; Munday, J. N.; Atwater, H. A. Design considerations for plasmonic photovoltaics. Adv. Mater. 2010, 22, 4794–4808.

    Article  CAS  Google Scholar 

  30. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  31. Ma, J. Z.; Zhang, J. T.; Xiong, Z. G.; Yong, Y.; Zhao, X. S. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J. Mater. Chem. 2011, 21, 3350–3352.

    Article  CAS  Google Scholar 

  32. Cheng, C.; Jiang, G. P.; Garvey, C. J.; Wang, Y. Y.; Simon, G. P.; Liu, J. Z.; Li, D. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2016, 2, e1501272.

    Article  Google Scholar 

  33. Yu, W. J.; Vu, Q. A.; Oh, H.; Nam, H. G.; Zhou, H. L.; Cha, S.; Kim, J. Y.; Carvalho, A.; Jeong, M.; Choi, H. et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 2016, 7, 13278.

    Article  CAS  Google Scholar 

  34. Tang, Q.; Li, L.; Song, Y.; Liu, Y.; Li, H.; Xu, W.; Liu, Y.; Hu, W.; Zhu, D. Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater. 2007, 19, 2624–2628.

    Article  CAS  Google Scholar 

  35. Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

    Article  CAS  Google Scholar 

  36. Ghosh, S.; Sarker, B. K.; Chunder, A.; Zhai, L.; Khondaker, S. I. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 2010, 96, 163109.

    Article  Google Scholar 

  37. Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially funded by the National Natural Science Foundation of China (No. 51603211) and the 111 Project (No. B14009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Dai, H., Zhang, Y. et al. Enhanced photo-driven ion pump through silver nanoparticles decorated graphene oxide membranes. Nano Res. 15, 612–616 (2022). https://doi.org/10.1007/s12274-021-3527-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3527-4

Keywords

Navigation