Skip to main content
Log in

Anisotropic in-plane thermal conductivity for multi-layer WTe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Improving thermal transport between substrate and transistors has become a vital solution to the thermal challenge in nanoelectronics. Recently 2D WTe2 has sparked extensive interest because of heavy atomic mass and low Debye temperature. Here, the thermal transport of supported WTe2 was studied via Raman thermometry with electrical heating. The supported 30 nm WTe2 encased with 70 nm Al2O3 delivered 4.8 W·m−1·K−1 in-plane thermal conductivity along zigzag direction at room temperature, which was almost 1.6 times larger than that along armchair direction (3.0 W·m−1·K−1). Interestingly, the superior and inferior directions for thermal transport are just opposite of those for electrical transport. Hence, a heat manipulation model in WTe2 FET device was proposed. Within the designed configuration, waste heat in WTe2 would be mostly dissipated to metal contacts located along zigzag, relieving the local temperature discrepancy in the channel effectively and preventing degradation or breakdown. Our study provides new insight into thermal transport of anisotropic 2D materials, which might inspire energy-efficient nanodevices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, J. T.; Liu, J. X.; Sun, K. L.; Zhao, Y.; Shao, Z. Y.; Liu, X. L.; Yuan, Y. B.; Li, Y. Z.; Xie, H. P. et al. PbI2-MoS2 heterojunction: Van der waals epitaxial growth and energy band alignment. J. Phys. Chem. Lett. 2019, 10, 4203–4208.

    Article  CAS  Google Scholar 

  2. Xiao, J. T.; Zhang, L.; Zhou, H.; Shao, Z. Y.; Liu, J. X.; Zhao, Y.; Li, Y. Z.; Liu, X. L.; Xie, H. P.; Gao, Y. L. et al. Type-II interface band alignment in the vdW PbI2-MoSe2 heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 32099–32105.

    Article  CAS  Google Scholar 

  3. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  CAS  Google Scholar 

  4. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    Article  CAS  Google Scholar 

  5. Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huan, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.

    Article  Google Scholar 

  6. Zheng, X. M.; Wei, Y. H.; Deng, C. Y.; Huang, H.; Yu, Y. Y.; Wang, G.; Peng, G.; Zhu, Z. H.; Zhang, Y.; Jiang, T. et al. Controlled layer-by-layer oxidation of MoTe2 via O3 exposure. ACS Appl. Mater. Interfaces 2018, 10, 30045–30050.

    Article  CAS  Google Scholar 

  7. Zheng, X. M.; Wei, Y. H.; Liu, J. X.; Wang, S. T.; Shi, J.; Yang, H.; Peng, G.; Deng, C. Y.; Luo, W.; Zhao, Y. et al. A homogeneous p-n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469–13476.

    Article  CAS  Google Scholar 

  8. Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952–958.

    Article  CAS  Google Scholar 

  9. Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

    Article  CAS  Google Scholar 

  10. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  Google Scholar 

  11. Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

    Article  CAS  Google Scholar 

  12. Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

    Article  CAS  Google Scholar 

  13. Zhang, X.; Sun, D. Z.; Li, Y. L.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y. M.; Heinz, T. F.; Hone, J. C. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929.

    Article  CAS  Google Scholar 

  14. Ong, Z. Y.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 2014, 118, 25272–25277.

    Article  CAS  Google Scholar 

  15. Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.

    Article  Google Scholar 

  16. Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

    Article  CAS  Google Scholar 

  17. Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

    Article  CAS  Google Scholar 

  18. Chen, Y.; Peng, B.; Cong, C. X.; Shang, J. Z.; Wu, L. S.; Yang, W. H.; Zhou, J. D.; Yu, P.; Zhang, H. B.; Wang, Y. L. et al. In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979.

    Article  Google Scholar 

  19. Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 1979, 34, 1–71.

    Article  CAS  Google Scholar 

  20. Ma, J. L.; Chen, Y. N.; Han, Z.; Li, W. Strong anisotropic thermal conductivity of monolayer WTe2. 2D Mater. 2016, 3, 045010.

    Article  Google Scholar 

  21. Liu, X. L.; Zhang, X.; Lin M. L.; Tan, P. H. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chin. Phys. B, 2017, 26, 067802.

    Article  Google Scholar 

  22. Mleczko, M. J.; Xu, R. J.; Okabe, K.; Kuo, H. H.; Fisher, I. R.; Wong, H. S. P.; Nishi, Y.; Pop, E. High current density and low thermal conductivity of atomically thin semimetallic WTe2. Acs Nano 2016, 10, 7507–7514.

    Article  CAS  Google Scholar 

  23. Wang, Q. S.; Yesilyurt, C.; Liu, F. C.; Siu, Z. B.; Cai, K. M.; Kumar, D.; Liu, Z.; Jalil, M. B. A.; Yang, H. Anomalous photothermoelectric transport due to anisotropic energy dispersion in WTe2. Nano Lett. 2019, 19, 2647–2652.

    Article  CAS  Google Scholar 

  24. Wei, Y. H.; Zhang, R. Y.; Zhang, Y.; Zheng, X. M.; Cai, W. W.; Ge, Q.; Novoselov, K. S.; Xu, Z. J.; Jiang, T.; Deng, C. Y. et al. Thickness-independent energy dissipation in graphene electronics. ACS Appl. Mater. Interfaces 2020, 12, 17706–17712.

    Article  CAS  Google Scholar 

  25. Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.

    Article  Google Scholar 

  26. Ali, F.; Ahmed, F.; Yang, Z.; Moon, I.; Lee, M.; Hassan, Y.; Lee, C.; Yoo, W. J. Energy dissipation in black phosphorus heterostructured devices. Adv. Mater. Interfaces 2019, 6, 1801528.

    Article  Google Scholar 

  27. Ahmed, F.; Kim, Y. D.; Choi, M. S.; Liu, X. C.; Qu, D. S.; Yang, Z.; Hu, J. Y.; Herman, I. P.; Hone, J.; Yoo, W. J. High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv. Funct. Mater. 2017, 27, 1604025.

    Article  Google Scholar 

  28. Yalon, E.; McClellan, C. J.; Smithe, K. K. H.; Rojo, M. M.; Xu, R. L.; Suryavanshi, S. V.; Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Farimani, A. B.; Pop, E. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 2017, 17, 3429–3433.

    Article  CAS  Google Scholar 

  29. Sun, H. Y.; Li, Q. F. Anisotropic phonon transport, thermal expansion and thermomechanics in monolayer Td-WTe2. arXiv. 2016, 1607.03639.

  30. Liao, A. D.; Wu, J. Z.; Wang, X. R.; Tahy, K.; Jena, D.; Dai, H. J.; Pop, E. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 2011, 106, 256801.

    Article  Google Scholar 

  31. Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

    Article  Google Scholar 

  32. Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. J. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 2007, 101, 093710.

    Article  Google Scholar 

  33. Liu, X. J.; Zhang, G.; Pei, Q. X.; Zhang, Y. W. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.

    Article  Google Scholar 

  34. Ma, J. L.; Li, W.; Luo, X. B. Intrinsic thermal conductivities and size effect of alloys of wurtzite AlN, GaN, and InN from first-principles. J. Appl. Phys. 2016, 119, 125702.

    Article  Google Scholar 

  35. Ma, J. L.; Li, W.; Luo, X. B. Intrinsic thermal conductivity and its anisotropy of wurtzite InN. Appl. Phys. Lett. 2014, 105, 082103.

    Article  Google Scholar 

  36. Vaziri, S.; Yalon, E.; Rojo, M. M.; Suryavanshi, S. V.; Zhang, H. R.; McClellan, C. J.; Bailey, C. S.; Smithe, K. K. H.; Gabourie, A. J.; Chen, V. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 2019, 5, eaax1325.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61801498, 11404399, 11874423, and 51701237), the National Defense Science and Technology Innovation Zone, the Scientific Researches Foundation of National University of Defense Technology (Nos. ZK18-01-03, ZK18-03-36, ZK20-16, and ZZKY-YX-08-06), the China Postdoctoral Science Foundation (CPSF) (No. 2019M663569), and the Youth Talent Lifting Project (No. 17-JCJQ-QT-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renyan Zhang, Xueao Zhang or Shiqiao Qin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Deng, C., Zheng, X. et al. Anisotropic in-plane thermal conductivity for multi-layer WTe2. Nano Res. 15, 401–407 (2022). https://doi.org/10.1007/s12274-021-3492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3492-y

Keywords

Navigation