Skip to main content
Log in

Carbon nanotube transistor technology for More-Moore scaling

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Scaling of silicon field-effect transistors has fueled the exponential development of microelectronics in the past 60 years, but is now close to its physical limits with the critical dimensions of state-of-the-art silicon devices approaching the sub-10 nm regime. Carbon nanotubes have been suggested to hold great promise of replacing the central role of silicon in the next-generation logic switches with their unique geometrical and electrical properties. In this article, I firstly examine the scaling advantages of carbon nanotubes compared to silicon from technology-development perspective, and then review the latest progress on addressing the manufacturability issues for scaled carbon-nanotube transistors, from materials to device-integration levels. Finally, the possible pathways for nanotube transistors to transition into commercial applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson, N. C.; Greenewald, K.; Lee, K.; Manso, G. F. The computational limits of deep learning. 2020, arXiv: 2007.05558. arXiv.org e-Print archive. https://arxiv.org/abs/2007.05558v1 (accessed Apr 15th, 2021).

  2. Liu, Y. Q.; Qian, K.; Yu, J. L.; Wang, K.; He, L. Effective scaling of blockchain beyond consensus innovations and Moore’s law. 2020, arXiv: 2001.01865. arXiv.org e-Print archive. https://arxiv.org/abs/2001.01865 (accessed Apr 15th, 2021)

  3. Leiserson, C. E.; Thompson, N. C.; Emer, J. S.; Kuszmaul, B. C.; Lampson, B. W.; Sanchez, D.; Schardl, T. B. There’s plenty of room at the top: What will drive computer performance after Moore’s law? Science 2020, 368, eaam9744.

    Article  CAS  Google Scholar 

  4. del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317–323.

    Article  CAS  Google Scholar 

  5. Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.

    Article  CAS  Google Scholar 

  6. Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.

    Article  CAS  Google Scholar 

  7. Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

    Article  CAS  Google Scholar 

  8. Hamada, N.; Sawada, S. I.; Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579–1581.

    Article  CAS  Google Scholar 

  9. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    CAS  Google Scholar 

  10. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single-and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  CAS  Google Scholar 

  11. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  12. McEuen, P. L.; Fuhrer, M. S.; Park H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.

    Article  Google Scholar 

  13. Collins, P. G.; Avouris, P. Nanotubes for electronics. Sci. Am. 2000, 283, 62–69.

    Article  CAS  Google Scholar 

  14. Bohr, M. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State Circuits Soc. Newsl. 2007, 12, 11–13.

    Article  Google Scholar 

  15. Meyerson, B. Innovation: The future of silicon technology. In Semico IMPACT Conference, Scottsdale, AZ, USA, 2004.

  16. Liu, Y.; Luisier, M.; Majumdar, A.; Antoniadis, D. A.; Lundstrom, M. S. On the interpretation of ballistic injection velocity in deeply scaled MOSFETs. IEEE Trans. Electron Devices 2012, 59, 994–1001.

    Article  CAS  Google Scholar 

  17. Jeong, C.; Antoniadis, D. A.; Lundstrom, M. S. On backscattering and mobility in nanoscale silicon MOSFETs. IEEE Trans. Electron Devices 2009, 56, 2762–2769.

    Article  CAS  Google Scholar 

  18. Theis, T. N.; Solomon, P. M. It’s time to reinvent the transistor! Science 2010, 327, 1600–1601.

    Article  CAS  Google Scholar 

  19. Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: Intrinsic elements. IEEE Trans. Electron Devices 2015, 62, 3061–3069.

    Article  CAS  Google Scholar 

  20. Xu, L.; Qiu, C. G.; Zhao, C. Y.; Zhang, Z. Y.; Peng, L. M. Insight into ballisticity of room-temperature carrier transport in carbon nanotube field-effect transistors. IEEE Trans. Electron Devices 2019, 66, 3535–3540.

    Article  CAS  Google Scholar 

  21. Yan, R. H.; Ourmazd, A.; Lee, K. F. Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Devices 1992, 39, 1704–1710.

    Article  CAS  Google Scholar 

  22. Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310–316.

    Article  CAS  Google Scholar 

  23. Yao, J. X.; Li, J.; Luo, K.; Yu, J. H.; Zhang, Q. Z.; Hou, Z. Z.; Gu, J.; Yang, W.; Wu, Z. H.; Yin, H. X. et al. Physical insights on quantum confinement and carrier mobility in Si, Si0.45Ge0.55, Ge gate-all-around NSFET for 5 nm technology node. IEEE J. Electron Devices Soc. 2018, 6, 841–848.

    Article  CAS  Google Scholar 

  24. Takagi, S.; Koga, J.; Toriumi, A. Subband structure engineering for performance enhancement of Si MOSFETs. In International Electron Devices Meeting. IEDM Technical Digest, Washington, DC, USA, 1997, pp 219–222.

  25. Brunner, T. A.; Chen, X. M.; Gabor, A.; Higgins, C.; Sun, L.; Mack, C. A. Line-edge roughness performance targets for EUV lithography. In Proceedings of SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII, San Jose, CA, USA, 2017, p 101430E.

  26. Uchida, K.; Saitoh, M.; Kobayashi, S. Carrier transport and stress engineering in advanced nanoscale transistors from (100) and (110) transistors to carbon nanotube FETs and beyond. In 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008, pp 1–4.

  27. Choi, J. H.; Park, Y. J.; Min, H. S. Electron mobility behavior in extremely thin SOI MOSFET’s. IEEE Electron Device Lett. 1995, 16, 527–529.

    Article  CAS  Google Scholar 

  28. Gamiz, F.; Lopez-Villanueva, J. A.; Roldan, J. B.; Carceller, J. E.; Cartujo, P. Monte Carlo simulation of electron transport properties in extremely thin SOI MOSFET’s. IEEE Trans. Electron Devices 1998, 45, 1122–1126.

    Article  CAS  Google Scholar 

  29. Doris, B.; Ieong, M.; Zhu, T.; Zhang, Y.; Steen, M.; Natzle, W.; Callegari, S.; Narayanan, V.; Cai, J.; Ku, S. H. et al. Device design considerations for ultra-thin SOI MOSFETs. In IEEE International Electron Devices Meeting 2003, Washington, DC, USA, 2003, pp 27.3.1–27.3.4.

  30. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153–158.

    Article  Google Scholar 

  31. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    Article  CAS  Google Scholar 

  32. Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    Article  CAS  Google Scholar 

  33. Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

    Article  CAS  Google Scholar 

  34. Li, M.; Yeo, K. H.; Suk, S. D.; Yeoh, Y. Y.; Kim, D. W.; Chung, T. Y.; Oh, K. S.; Lee, W. S. Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate. In 2009 Symposium on VLSI Technology, Kyoto, Japan, 2009, pp 94–95.

  35. Yu, B.; Chang, L.; Ahmed, S.; Wang, H. H.; Bell, S.; Yang, C. Y.; Tabery, C.; Ho, C.; Xiang, Q.; King, T. J. et al. FinFET scaling to 10 nm gate length. In Digest. International Electron Devices Meeting, San Francisco, CA, USA, 2002, pp 251–254.

  36. Franklin, A. D.; Koswatta, S. O.; Farmer, D. B.; Smith, J. T.; Gignac, L.; Breslin, C. M.; Han, S. J.; Tulevski, G. S.; Miyazoe, H.; Haensch, W. et al. Carbon nanotube complementary wrap-gate transistors. Nano Lett. 2013, 13, 2490–2495.

    Article  CAS  Google Scholar 

  37. Farmer, D. B.; Gordon, R. G. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 2006, 6, 699–703.

    Article  CAS  Google Scholar 

  38. Kwak, I.; Kavrik, M.; Park, J. H.; Grissom, L.; Fruhberger, B.; Wong, K. T.; Kang, S.; Kummel, A. C. Low interface trap density in scaled bilayer gate oxides on 2D materials via nanofog low temperature atomic layer deposition. Appl. Surf. Sci. 2019, 463, 758–766.

    Article  CAS  Google Scholar 

  39. Pitner, G.; Zhang, Z.; Lin, Q.; Su, S. K.; Gilardi, C.; Kuo, C.; Kashyap, H.; Weiss, T.; Yu, Z.; Chao, T. A. et al. Sub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm gate length. In 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp 3.5.1–3.5.4.

  40. Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A Compact virtual-source model for carbon nanotube FETs in the Sub-10-nm regime—part II: Extrinsic elements, performance assessment, and design optimization. IEEE Trans. Electron Devices 2015, 62, 3070–3078.

    Article  CAS  Google Scholar 

  41. Franklin, A. D.; Han, S. J.; Tulevski, G. S.; Luisier, M.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. In 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp 23.7.1–23.7.3.

  42. Zhang, Z.; Koswatta, S. O.; Bedell, S. W.; Baraskar, A.; Guillorn, M.; Engelmann, S. U.; Zhu, Y.; Gonsalves, J.; Pyzyna, A.; Hopstaken, M. et al. Ultra low contact resistivities for CMOS beyond 10-nm node. IEEE Electron Device Lett. 2013, 34, 723–725.

    Article  CAS  Google Scholar 

  43. Waldron, N.; Kim, D. H.; del Alamo, J. A. A self-aligned InGaAs HEMT architecture for logic applications. IEEE Trans. Electron Devices 2010, 57, 297–304.

    Article  CAS  Google Scholar 

  44. Berger, H. H. Models for contacts to planar devices. Solid State Electron. 1972, 15, 145–158.

    Article  Google Scholar 

  45. Solomon, P. M. Contact resistance to a one-dimensional quasi-ballistic nanotube/wire. IEEE Electron Device Lett. 2011, 32, 246–248.

    Article  CAS  Google Scholar 

  46. Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

    Article  CAS  Google Scholar 

  47. Tang, J. S.; Cao, Q.; Farmer, D. B.; Tulevski, G.; Han, S. J. Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts. In 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016, pp 5.1.1–5.1.4.

  48. Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

    Article  CAS  Google Scholar 

  49. Franklin, A. D.; Farmer, D. B.; Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 2014, 8, 7333–7339.

    Article  CAS  Google Scholar 

  50. Pitner, G.; Hills, G.; Llinas, J. P.; Persson, K. M.; Park, R.; Bokor, J.; Mitra, S.; Wong, H. S. P. Low-temperature side contact to carbon nanotube transistors: Resistance distributions down to 10 nm contact length. Nano Lett. 2019, 19, 1083–1089.

    Article  CAS  Google Scholar 

  51. Yeap, G.; Lin, S. S.; Chen, Y. M.; Shang, H. L.; Wang, P. W.; Lin, H. C.; Peng, Y. C.; Sheu, J. Y.; Wang, M.; Chen, X. et al. 5nm CMOS production technology platform featuring full-fledged EUV, and high mobility channel FinFETs with densest 0.021µm2 SRAM cells for mobile SoC and high performance computing applications. In 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp 36.7.1–36.7.4.

  52. Cao, Q.; Han, S. J. Single-walled carbon nanotubes for highperformance electronics. Nanoscale 2013, 5, 8852–8863.

    Article  CAS  Google Scholar 

  53. Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

    Article  CAS  Google Scholar 

  54. Wang, J. T.; Jin, X.; Liu, Z. B.; Yu, G.; Ji, Q. Q.; Wei, H. M.; Zhang, J.; Zhang, K.; Li, D. Q.; Yuan, Z. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1, 326–331.

    Article  CAS  Google Scholar 

  55. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K. Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

    Article  CAS  Google Scholar 

  56. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

    Article  CAS  Google Scholar 

  57. Franklin, A. D. The road to carbon nanotube transistors. Nature 2013, 498, 443–444.

    Article  CAS  Google Scholar 

  58. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  CAS  Google Scholar 

  59. Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443–450.

    Article  CAS  Google Scholar 

  60. Green, A. A.; Hersam, M. C. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 2011, 23, 2185–2190.

    Article  CAS  Google Scholar 

  61. Tulevski, G. S.; Franklin, A. D.; Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 2013, 7, 2971–2976.

    Article  CAS  Google Scholar 

  62. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    Article  CAS  Google Scholar 

  63. Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of highperformance thin-film transistors. Small 2016, 12, 4993–4999.

    Article  CAS  Google Scholar 

  64. Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541.

    Article  CAS  Google Scholar 

  65. Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

    Article  CAS  Google Scholar 

  66. Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: The power of polymer wrapping. Acc. Chem. Res. 2014, 47, 2446–2456.

    Article  CAS  Google Scholar 

  67. Lei, T.; Pochorovski, I.; Bao, Z. N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 2017, 50, 1096–1104.

    Article  CAS  Google Scholar 

  68. Wang, C. J.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.

    Article  CAS  Google Scholar 

  69. Gui, H.; Streit, J. K.; Fagan, J. A.; Hight Walker, A. R.; Zhou, C. W.; Zheng, M. Redox sorting of carbon nanotubes. Nano Lett. 2015, 15, 1642–1646.

    Article  CAS  Google Scholar 

  70. Wang, J.; Nguyen, T. D.; Cao, Q.; Wang, Y. L.; Tan, M. Y. C.; Chan-Park, M. B. Selective surface charge sign reversal on metallic carbon nanotubes for facile ultrahigh purity nanotube sorting. ACS Nano 2016, 10, 3222–3232.

    Article  CAS  Google Scholar 

  71. Lefebvre, J.; Ding, J. F.; Li, Z.; Finnie, P.; Lopinski, G.; Malenfant, P. R. L. High-purity semiconducting single-walled carbon nanotubes: A key enabling material in emerging electronics. Acc. Chem. Res. 2017, 50, 2479–2486.

    Article  CAS  Google Scholar 

  72. Lei, T.; Shao, L. L.; Zheng, Y. Q.; Pitner, G.; Fang, G. H.; Zhu, C. X.; Li, S. C.; Beausoleil, R.; Wong, H. S. P.; Huang, T. C. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161.

    Article  CAS  Google Scholar 

  73. Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

    Article  CAS  Google Scholar 

  74. Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R. Y.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

    Article  CAS  Google Scholar 

  75. Song, J. Z.; Li, Y. H.; Du, F.; Xie, X.; Huang, Y. G.; Rogers, J. A. Thermal analysis for laser selective removal of metallic single-walled carbon nanotubes. J. Appl. Phys. 2015, 117, 165102.

    Article  CAS  Google Scholar 

  76. Shulaker, M. M.; Van Rethy, J.; Wu, T. F.; Suriyasena Liyanage, L.; Wei, H.; Li, Z. Y.; Pop, E.; Gielen, G.; Wong, H. S. P.; Mitra, S. Carbon nanotube circuit integration up to sub-20 nm channel lengths. ACS Nano 2014, 8, 3434–3443.

    Article  CAS  Google Scholar 

  77. Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J. H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 347–355.

    Article  CAS  Google Scholar 

  78. Jie, Z.; Patil, N.; Hazeghi, A.; Mitra, S. Carbon Nanotube circuits in the presence of carbon nanotube density variations. In 2009 46th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2009, pp 71–76.

  79. Park, H.; Afzali, A.; Han, S. J.; Tulevski, G. S.; Franklin, A. D.; Tersoff, J.; Hannon, J. B.; Haensch, W. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 2012, 7, 787–791.

    Article  CAS  Google Scholar 

  80. Kumar, B.; Falk, A. L.; Afzali, A.; Tulevski, G. S.; Oida, S.; Han, S. J.; Hannon, J. B. Spatially selective, high-density placement of polyfluorene-sorted semiconducting carbon nanotubes in organic solvents. ACS Nano 2017, 11, 7697–7701.

    Article  CAS  Google Scholar 

  81. Jinkins, K. R.; Chan, J.; Jacobberger, R. M.; Berson, A.; Arnold, M. S. Substrate-Wide confined shear alignment of carbon nanotubes for thin film transistors. Adv. Electron. Mater. 2019, 5, 1800593.

    Article  CAS  Google Scholar 

  82. Tao, A. R.; Huang, J. X.; Yang, P. D. Langmuir—blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 2008, 41, 1662–1673.

    Article  CAS  Google Scholar 

  83. Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. S.; Dai, H. J. Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890–4891.

    Article  CAS  Google Scholar 

  84. Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

    Article  CAS  Google Scholar 

  85. Perebeinos, V.; Tersoff, J. Wetting transition for carbon nanotube arrays under metal contacts. Phys. Rev. Lett. 2015, 114, 085501.

    Article  CAS  Google Scholar 

  86. Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.

    Article  CAS  Google Scholar 

  87. Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

    Article  CAS  Google Scholar 

  88. Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.

    Article  CAS  Google Scholar 

  89. Jinkins, K. R.; Chan, J.; Brady, G. J.; Gronski, K. K.; Gopalan, P.; Evensen, H. T.; Berson, A.; Arnold, M. S. Nanotube alignment mechanism in floating evaporative self-assembly. Langmuir 2017, 33, 13407–13414.

    Article  CAS  Google Scholar 

  90. Han, S. P.; Maune, H. T.; Barish, R. D.; Bockrath, M.; Goddard, W. A. DNA-linker-induced surface assembly of ultra dense parallel single walled carbon nanotube arrays. Nano Lett. 2012, 12, 1129–1135.

    Article  CAS  Google Scholar 

  91. Zhao, M. Y.; Chen, Y. H.; Wang, K. X.; Zhang, Z. X.; Streit, J. K.; Fagan, J. A.; Tang, J. S.; Zheng, M.; Yang, C. Y.; Zhu, Z. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368, 878–881.

    Article  CAS  Google Scholar 

  92. Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877.

    Article  CAS  Google Scholar 

  93. Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

    Article  CAS  Google Scholar 

  94. Shahrjerdi, D.; Franklin, A. D.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Haensch, W. High device yield carbon nanotube NFETs for high-performance logic applications. In 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp 23.3.1–23.3.4.

  95. Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q. et al. Y-contacted highperformance n-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett. 2009, 9, 4209–4214.

    Article  CAS  Google Scholar 

  96. Wang, C.; Ryu, K.; Badmaev, A.; Zhang, J. L.; Zhou, C. W. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. ACS Nano 2011, 5, 1147–1153.

    Article  CAS  Google Scholar 

  97. Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube passtransistor logic integrated circuits. Nat. Commun. 2012, 3, 677.

    Article  CAS  Google Scholar 

  98. Tang, J. S.; Farmer, D.; Bangsaruntip, S.; Chiu, K. C.; Kumar, B.; Han, S. J. Contact engineering and channel doping for robust carbon nanotube NFETs. In 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, China, 2017, pp 1–2.

  99. Han, S. J.; Tang, J. S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865.

    Article  CAS  Google Scholar 

  100. Ha, T. J.; Chen, K.; Chuang, S.; Yu, K. M.; Kiriya, D.; Javey, A. Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 2015, 15, 392–397.

    Article  CAS  Google Scholar 

  101. Tang, J. S.; Cao, Q.; Tulevski, G.; Jenkins, K. A.; Nela, L.; Farmer, D. B.; Han, S. J. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191–196.

    Article  CAS  Google Scholar 

  102. Lau, C.; Srimani, T.; Bishop, M. D.; Hills, G.; Shulaker, M. M. Tunable n-type doping of carbon nanotubes through engineered atomic layer deposition HfOx films. ACS Nano 2018, 12, 10924–10931.

    Article  CAS  Google Scholar 

  103. Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

    Article  CAS  Google Scholar 

  104. Kanhaiya, P. S.; Lau, C.; Hills, G.; Bishop, M. D.; Shulaker, M. M. Carbon Nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE Trans. Electron Devices 2019, 66, 5375–5380.

    Article  CAS  Google Scholar 

  105. Kita, K.; Toriumi, A. Intrinsic origin of electric dipoles formed at high-k/SiO2 interface. In 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008, pp 1–4.

  106. Kita, K.; Toriumi, A. Origin of electric dipoles formed at high-k/SiO2 interface. Appl. Phys. Lett. 2009, 94, 132902.

    Article  CAS  Google Scholar 

  107. McMahon, W.; Tian, C.; Uppal, S.; Kothari, H.; Jin, M.; LaRosa, G.; Nigam, T.; Kerber, A.; Linder, B. P.; Cartier, E. et al. Intrinsic dielectric stack reliability of a high performance bulk planar 20nm replacement gate high-k metal gate technology and comparison to 28nm gate first high-k metal gate process. In 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2013, pp 4C.4.1–4C.4.4.

  108. Noyce, S. G.; Doherty, J. L.; Cheng, Z. H.; Han, H.; Bowen, S.; Franklin, A. D. Electronic stability of carbon nanotube transistors under long-term bias stress. Nano Lett. 2019, 19, 1460–1466.

    Article  CAS  Google Scholar 

  109. Hu, Z. Y.; Tulevski, G. S.; Hannon, J. B.; Afzali, A.; Liehr, M.; Park, H. Variability and reliability analysis in self-assembled multichannel carbon nanotube field-effect transistors. Appl. Phys. Lett. 2015, 106, 243106.

    Article  CAS  Google Scholar 

  110. Cao, Q.; Han, S. J.; Penumatcha, A. V.; Frank, M. M.; Tulevski, G. S.; Tersoff, J.; Haensch, W. E. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors. ACS Nano 2015, 9, 1936–1944.

    Article  CAS  Google Scholar 

  111. Cao, Q.; Tersoff, J.; Han, S. J.; Penumatcha, A. V. Scaling of device variability and subthreshold swing in ballistic carbon nanotube transistors. Phys. Rev. Appl. 2015, 4, 024022.

    Article  CAS  Google Scholar 

  112. Franklin, A. D.; Tulevski, G. S.; Han, S. J.; Shahrjerdi, D.; Cao, Q.; Chen, H. Y.; Wong, H. S. P.; Haensch, W. Variability in carbon nanotube transistors: Improving device-to-device consistency. ACS Nano 2012, 6, 1109–1115.

    Article  CAS  Google Scholar 

  113. Osburn, C.; Berger, H.; Donovan, R.; Jones, G. The effects of contamination on semiconductor manufacturing yield. J. IEST 1988, 31, 45–57.

    Article  CAS  Google Scholar 

  114. Gorodokin, V.; Zemlyanov, D. Metallic contamination in silicon processing. In 2004 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Tel-Aviv, Israel, 2004, pp 157–160.

  115. Bishop, M. D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M. M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501.

    Article  CAS  Google Scholar 

  116. Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

    Article  CAS  Google Scholar 

  117. Shulaker, M. M.; Wu, T. F.; Pal, A.; Zhao, L.; Nishi, Y.; Saraswat, K.; Wong, H. P.; Mitra, S. Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014, pp 27.4.1–27.4.4.

  118. Liu, Y.; Wang, S.; Liu, H. P.; Peng, L. M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649.

    Article  CAS  Google Scholar 

  119. Batude, P.; Vinet, M.; Previtali, B.; Tabone, C.; Xu, C.; Mazurier, J.; Weber, O.; Andrieu, F.; Tosti, L.; Brevard, L. et al. Advances, challenges and opportunities in 3D CMOS sequential integration. In 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp 7.3.1–7.3.4.

  120. Vinet, M.; Batude, P.; Fenouillet-Beranger, C.; Clermidy, F.; Brunet, L.; Rozeau, O.; Hartmannn, J. M.; Billoint, O.; Cibrario, G.; Previtali, B. et al. Monolithic 3D integration: A powerful alternative to classical 2D scaling. In SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Millbrae, CA, USA, 2014, pp 1–3.

  121. Aly, M. M. S.; Wu, T. F.; Bartolo, A.; Malviya, Y. H.; Hwang, W.; Hills, G.; Markov, I.; Wootters, M.; Shulaker, M. M.; Wong, H. S. P. et al. The N3XT approach to energy-efficient abundant-data computing. Proc. IEEE 2019, 107, 19–48.

    Article  CAS  Google Scholar 

  122. Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  CAS  Google Scholar 

  123. Hu, Y. F.; Peng, L. M.; Xiang, L.; Zhang, H. Flexible integrated circuits based on carbon nanotubes. Acc. Mater. Res. 2020, 1, 88–99.

    Article  CAS  Google Scholar 

  124. Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

    Article  CAS  Google Scholar 

  125. Zhu, C. X.; Chortos, A.; Wang, Y; Pfattner, R.; Lei, T.; Hinckley, A. C.; Pochorovski, I.; Yan, X. Z.; To, J. W. F.; Oh, J. Y. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 2018, 1, 183–190.

    Article  Google Scholar 

  126. Nela, L.; Tang, J. S.; Cao, Q.; Tulevski, G.; Han, S. J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054–2059.

    Article  CAS  Google Scholar 

  127. Cao, Q. Better radio-frequency transistors with nanotubes. Nat. Electron. 2019, 2, 495–496.

    Article  Google Scholar 

  128. Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819.

    Article  CAS  Google Scholar 

  129. Che, Y. C.; Lin, Y. C.; Kim, P.; Zhou, C. W. T-gate aligned nanotube radio frequency transistors and circuits with superior performance. ACS Nano 2013, 7, 4343–4350.

    Article  CAS  Google Scholar 

  130. Zhong, D. L.; Shi, H. W.; Ding, L.; Zhao, C. Y.; Liu, J. X.; Zhou, J. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz. ACS Appl. Mater. Interfaces 2019, 11, 42496–42503.

    Article  CAS  Google Scholar 

  131. Cao, Y.; Che, Y. C.; Seo, J. W. T.; Gui, H.; Hersam, M. C.; Zhou, C. W. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes. Appl. Phys. Lett. 2016, 108, 233105.

    Article  CAS  Google Scholar 

  132. Wang, Z. X.; Liang, S. B.; Zhang, Z. Y.; Liu, H. G.; Zhong, H.; Ye, L. H.; Wang, S.; Zhou, W. W.; Liu, J.; Chen, Y. B. et al. Scalable fabrication of ambipolar transistors and radio-frequency circuits using aligned carbon nanotube arrays. Adv. Mater. 2014, 26, 645–652.

    Article  CAS  Google Scholar 

  133. Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

    Article  CAS  Google Scholar 

  134. Rutherglen, C.; Kane, A. A.; Marsh, P. F.; Cain, T. A.; Hassan, B. I.; AlShareef, M. R.; Zhou, C. W.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530–539.

    Article  CAS  Google Scholar 

  135. Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. USA 2008, 105, 1405–1409.

    Article  CAS  Google Scholar 

  136. Hároz, E. H.; Duque, J. G.; Tu, X. M.; Zheng, M.; Hight Walker, A. R.; Hauge, R. H.; Doorn, S. K.; Kono, J. Fundamental optical processes in armchair carbon nanotubes. Nanoscale 2013, 5, 1411–1439.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Foundation (NSF) through grant ECCS-1950182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Res. 14, 3051–3069 (2021). https://doi.org/10.1007/s12274-021-3459-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3459-z

Keywords

Navigation