Skip to main content
Log in

Developments in stability and passivation strategies for black phosphorus

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Black phosphorus (BP), a promising two-dimensional layer material, has attracted increasing attention due to its high carrier mobility, thickness-dependent tunable bandgap, in-plane anisotropy, and other advantageous characteristics. Because of these excellent characteristics, BP has been considered for applications in optics, electronics, optoelectronics, sensors, and energy storage. However, early studies found that BP has high chemical activity due to the lone pair electrons of P atoms on the surface and edges, resulting in rapid degradation under ambient conditions and limiting many applications. Recently, these thorny issues have been alleviated through superior physical and chemical passivation techniques, and passivated BP can be used in various devices under ambient and water conditions with excellent performance over a long period. This review, highlights the critical problems addressed in solving the serious instability of BP in a harsh environment by effective passivation technology. These unique strategies can provide more researchers with a fundamental study of the fascinating properties of BP. Finally, we found that passivated BP not only showed good stability under ambient conditions but also exhibited excellent performance compared with the original BP. Therefore, it is anticipated that this overview can contribute to the application of BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, J.; Zhang, G.; Li, B. W. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532–536.

    Article  CAS  Google Scholar 

  2. Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

    Article  CAS  Google Scholar 

  3. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  CAS  Google Scholar 

  4. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  5. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  6. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  7. Carbone, M. G. P.; Manikas, A. C.; Souli, I.; Pavlou, C.; Galiotis, C. Mosaic pattern formation in exfoliated graphene by mechanical deformation. Nat. Commun. 2019, 10, 1572.

    Article  Google Scholar 

  8. Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S. B. Recent progress on stability and passivation of black phosphorus. Adv. Mater. 2018, 30, 1704749.

    Article  Google Scholar 

  9. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.

    Article  CAS  Google Scholar 

  10. Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    Article  CAS  Google Scholar 

  11. Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

    Article  CAS  Google Scholar 

  12. Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Integrating high-quality dielectrics with one-nanometer equivalent oxide thickness on two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

    Article  CAS  Google Scholar 

  13. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  14. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  CAS  Google Scholar 

  15. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    Article  CAS  Google Scholar 

  16. Merkl, P.; Mooshammer, F.; Steinleitner, P.; Girnghuber, A.; Lin, K. Q.; Nagler, P.; Holler, J.; Schüller, C.; Lupton, J. M.; Korn, T. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 2019, 18, 691–696.

    Article  CAS  Google Scholar 

  17. Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

    Article  CAS  Google Scholar 

  18. Zhou, L. Y.; Yan, S. C.; Pan, L. J.; Wang, X. R.; Wang, Y. Q.; Shi, Y. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Res. 2016, 9, 857–865.

    Article  CAS  Google Scholar 

  19. Lee, H.; Bak, S.; Kim, J.; Lee, H. The effect of the dopant’s reactivity for high-performance 2D MoS2 thin-film transistor. Nano Res. 2021, 14, 198–204.

    Article  CAS  Google Scholar 

  20. Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P. B.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res. 2019, 12, 2997–3002.

    Article  CAS  Google Scholar 

  21. Li, L. K.; Yu, Y. J.; Ye, G J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  CAS  Google Scholar 

  22. Zhang, G. W.; Huang, S. Y.; Chaves, A.; Song, C. Y.; Özçelik, V. O.; Low, T.; Yan, H. G. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 2017, 8, 14071.

    Article  CAS  Google Scholar 

  23. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

    Article  Google Scholar 

  24. Zhang, G. W.; Chaves, A.; Huang, S. Y.; Wang, F. J.; Xing, Q. X.; Low, T.; Yan, H. G. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 2018, 4, eaap9977.

    Article  Google Scholar 

  25. Sang, D. K.; Wang, H. D.; Guo, Z. N.; Xie, N.; Zhang, H. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 2019, 29, 1903419.

    Article  CAS  Google Scholar 

  26. Xiao, Z. R.; Qiao, J. S.; Lu, W. L.; Ye, G. J.; Chen, X. H.; Zhang, Z.; Ji, W.; Li, J. X.; Jin, C. H. Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Res. 2017, 10, 2519–2526.

    Article  CAS  Google Scholar 

  27. Zhao, J. L.; Zhu, J. J.; Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Tang, J. N.; Fan, D. Y.; Li, J. Q.; Zhang, H. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat. Commun. 2019, 10, 4062.

    Article  Google Scholar 

  28. Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

    Article  Google Scholar 

  29. Zhu, X. J.; Zhang, T. M.; Jiang, D. C.; Duan, H. L.; Sun, Z. J.; Zhang, M. M.; Jin, H. C.; Guan, R. N.; Liu, Y. J.; Chen, M. Q. et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 2018, 9, 4177.

    Article  Google Scholar 

  30. Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 2015, 6, 7809.

    Article  CAS  Google Scholar 

  31. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    Article  CAS  Google Scholar 

  32. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  CAS  Google Scholar 

  33. Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

    Article  CAS  Google Scholar 

  34. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    Article  CAS  Google Scholar 

  35. Tan, S. J. R.; Abdelwahab, I.; Chu, L. Q.; Poh, S. M.; Liu, Y. P.; Lu, J.; Chen, W.; Loh, K. P. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 2018, 30, 1704619.

    Article  Google Scholar 

  36. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.

    Article  CAS  Google Scholar 

  37. Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.

    Article  CAS  Google Scholar 

  38. Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.

    Article  CAS  Google Scholar 

  39. Li, X. F.; Yu, Z. Q.; Xiong, X.; Li, T. Y.; Gao, T. T.; Wang, R. S.; Huang, R.; Wu, Y. Q. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 2019, 5, eaau3194.

    Article  Google Scholar 

  40. Kim, S.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Jin, T.; Chang, S.; Watanabe, K.; Taniguchi, T.; Cho, S. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 2020, 15, 203–206.

    Article  CAS  Google Scholar 

  41. Li, H.; Tie, J.; Li, J. Z.; Ye, M.; Zhang, H.; Zhang, X. Y.; Pan, Y. Y.; Wang, Y. Y.; Quhe, R.; Pan, F. et al. High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res. 2018, 11, 2658–2668.

    Article  CAS  Google Scholar 

  42. Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R.; Wang, Y. Y.; Guo, Y.; Zhang, H.; Dan, Y.; Song, Z. G.; Li, J. Z. et al. Three-layer phosphorene-metal interfaces. Nano Res. 2018, 11, 707–721.

    Article  CAS  Google Scholar 

  43. Wu, X. J.; Xu, Y. J.; Hu, Y.; Wu, G.; Cheng, H. Y.; Yu, Q.; Zhang, K.; Chen, W.; Chen, S. Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat. Commun 2018, 9, 4573.

    Article  Google Scholar 

  44. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

    Article  CAS  Google Scholar 

  45. Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

    Article  CAS  Google Scholar 

  46. Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150.

    Article  CAS  Google Scholar 

  47. Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 2014, 4, 6452.

    Article  CAS  Google Scholar 

  48. Duan, S.; Cui, Y. F.; Chen, X.; Yi, W. C.; Liu, Y. X.; Liu, X. B. Ultrahigh thermoelectric performance realized in black phosphorus system by favorable band engineering through group VA doping. Adv. Funct. Mater. 2019, 29, 1904346.

    Article  Google Scholar 

  49. Viti, L.; Politano, A.; Zhang, K.; Vitiello, M. S. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 2019, 11, 1995–2002.

    Article  CAS  Google Scholar 

  50. Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

    Article  CAS  Google Scholar 

  51. Yan, S. C.; Wang, B. J.; Wang, Z. L.; Hu, D.; Xu, X.; Wang, J. Z.; Shi, Y. Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron. 2016, 80, 34–38.

    Article  CAS  Google Scholar 

  52. Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

    Article  CAS  Google Scholar 

  53. Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

    Article  Google Scholar 

  54. He, J. S.; Tao, L. L.; Zhang, H.; Zhou, B.; Li, J. B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593.

    Article  CAS  Google Scholar 

  55. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

    Article  CAS  Google Scholar 

  56. Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, G. C.; Hersam, M. C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.

    Article  CAS  Google Scholar 

  57. Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Lèvesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832.

    Article  CAS  Google Scholar 

  58. Zheng, Y.; Hu, Z. H.; Han, C.; Guo, R.; Xiang, D.; Lei, B.; Wang, Y. N.; He, J.; Lai, M.; Chen, W. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 2019, 12, 531–536.

    Article  CAS  Google Scholar 

  59. Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437–11441.

    Article  CAS  Google Scholar 

  60. Hu, Z. H.; Li, Q.; Lei, B.; Zhou, Q. H.; Xiang, D.; Lyu, Z. Y.; Hu, F.; Wang, J. Y.; Ren, Y. J.; Guo, R. et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem., Int. Ed. 2017, 56, 9131–9135.

    Article  CAS  Google Scholar 

  61. Hu, Z. X.; Kong, X. H.; Qiao, J. S.; Normand, B.; Ji, W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 2016, 8, 2740–2750.

    Article  CAS  Google Scholar 

  62. Shulenburger, L.; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tománek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 2015, 15, 8170–8175.

    Article  CAS  Google Scholar 

  63. Zhang, Q. Z.; Huang, S. Y.; Deng, J. J.; Gangadharan, D. T.; Yang, F.; Xu, Z. H.; Giorgi, G.; Palummo, M.; Chaker, M.; Ma, D. L. Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution. Adv. Funct. Mater. 2019, 29, 1902486.

    Article  Google Scholar 

  64. Wild, S.; Fickert, M.; Mitrovic, A.; Lloret, V.; Neiss, C.; Vidal-Moya, J. A.; Rivero-Crespo, M. Á.; Leyva-Pérez, A.; Werbach, K.; Peterlik, H. et al. Lattice opening upon bulk reductive covalent functionalization of black phosphorus. Angew. Chem., Int. Ed. 2019, 58, 5763–5768.

    Article  CAS  Google Scholar 

  65. Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

    Article  CAS  Google Scholar 

  66. Li, Y. Y.; Lin, S. H.; Liu, Y. H.; Chai, Y.; Lau, S. P. Tunable Schottky barriers in ultrathin black phosphorus field effect transistors via polymer capping. 2D Mater. 2019, 6, 024001.

    Article  CAS  Google Scholar 

  67. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    Article  CAS  Google Scholar 

  68. Liu, Y. P.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L. J.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J. P.; Bao, Y.; Xu, H. et al. Tailoring sample-wide pseudo-magnetic fields on a graphene-black phosphorus heterostructure. Nat. Nanotechnol. 2018, 13, 828–834.

    Article  CAS  Google Scholar 

  69. Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137–36145.

    Article  CAS  Google Scholar 

  70. Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

    Article  CAS  Google Scholar 

  71. Doganov, R. A.; O’Farrell, E. C. T.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T. et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 2015, 6, 6647.

    Article  CAS  Google Scholar 

  72. Sinha, S.; Takabayashi, Y.; Shinohara, H.; Kitaura, R. Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method. 2D Mater. 2016, 3, 035010.

    Article  Google Scholar 

  73. Kim, J. S.; Liu, Y. N.; Zhu, W. N.; Kim, S.; Wu, D.; Tao, L.; Dodabalapur, A.; Lai, K. J.; Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 2015, 5, 8989.

    Article  CAS  Google Scholar 

  74. Favron, A.; Gaufrès, E.; Fossard, F.; Lévesque, P. L.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Exfoliating pristine black phosphorus down to the monolayer: Photo-oxidation and electronic confinement effects. Physics 2014, 1 708–712.

    Google Scholar 

  75. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  CAS  Google Scholar 

  76. Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.

    Article  CAS  Google Scholar 

  77. Gamage, S.; Fali, A.; Aghamiri, N.; Yang, L.; Ye, P. D.; Abate, Y. Reliable passivation of black phosphorus by thin hybrid coating. Nanotechnology 2017, 28, 265201.

    Article  CAS  Google Scholar 

  78. Gamage, S.; Li, Z.; Yakovlev, V. S.; Lewis, C.; Wang, H.; Cronin, S. B.; Abate, Y. Nanoscopy of black phosphorus degradation. Adv. Mater. Interfaces 2016, 3, 1600121.

    Article  Google Scholar 

  79. Wei, Q. Q.; He, J. T.; Yang, S. L.; Jia, H. Y.; Liu, Y. Y.; Liu, W.; Liu, Y.; Li, T. Z. Investigation of black phosphorus field-effect transistors and its stability. Opt. Quant. Electron. 2016, 48, 344.

    Article  Google Scholar 

  80. Xing, B. R.; Guan, L.; Yu, Y.; Niu, X. Y.; Yan, X. Y.; Zhang, S. C.; Yao, J. D.; Wang, D.; Sha, J.; Wang, Y. W. HfO2-passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio. Nanotechnology 2019, 30, 345208.

    Article  CAS  Google Scholar 

  81. Ho, P. H.; Li, M. K.; Sankar, R.; Shih, F. Y.; Li, S. S.; Chang, Y. R.; Wang, W. H.; Chou, F. C.; Chen, C. W. Tunable photoinduced carrier transport of a black phosphorus transistor with extended stability using a light-sensitized encapsulated layer. ACS Photonics 2016, 3, 1102–1108.

    Article  CAS  Google Scholar 

  82. Galceran, R.; Gaufres, E.; Loiseau, A.; Piquemal-Banci, M.; Godel, F.; Vecchiola, A.; Bezencenet, O.; Martin, M. B.; Servet, B.; Petroff, F. et al. Stabilizing ultra-thin black phosphorus with in-situ-grown 1 nm-Al2O3 barrier. Appl. Phys. Lett. 2017, 111, 243101.

    Article  Google Scholar 

  83. Son, Y.; Kozawa, D.; Liu, A. T.; Koman, V. B.; Wang, Q. H.; Strano, M. S. A study of bilayer phosphorene stability under MoS2-passivation. 2D Mater. 2017, 4, 025091.

    Article  Google Scholar 

  84. Kim, J.; Baek, S. K.; Kim, K. S.; Chang, Y. J.; Choi, E. J. Long-term stability study of graphene-passivated black phosphorus under air exposure. Curr. Appl. Phys. 2016, 16, 165–169.

    Article  Google Scholar 

  85. de Visser, P. J.; Chua, R.; Island, J. O.; Finkel, M.; Katan, A. J.; Thierschmann, H.; van der Zant, H. S. J.; Klapwijk, T. M. Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy. 2D Mater. 2016, 3, 021002.

    Article  Google Scholar 

  86. Wan, B. S.; Yang, B. C.; Wang, Y.; Zhang, J. Y.; Zeng, Z. M.; Liu, Z. Y.; Wang, W. H. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 2015, 26, 435702.

    Article  Google Scholar 

  87. Xu, Y. J.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y. M.; Li, S. J.; Bao, Q. L.; Zhang, H.; Zhang, Y. G. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 2017, 27, 1702211.

    Article  Google Scholar 

  88. Edmonds, M. T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O’Donnell, K. M.; Koenig, S. P.; Coker, D. F.; Özyilmaz, B.; Castro Neto, A. H.; Fuhrer, M. S. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 14557–14562.

    Article  CAS  Google Scholar 

  89. Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Noncovalent functionalization of black phosphorus. Angew. Chem., Int. Ed. 2016, 55, 14557–14562.

    Article  Google Scholar 

  90. Wang, H. Y.; Hu, K.; Li, Z.; Wang, C.; Yu, M.; Li, Z. G.; Li, Z. Black phosphorus nanosheets passivation using a tripeptide. Small 2018, 14, 1801701.

    Article  Google Scholar 

  91. Li, P.; Zhang, D. Z.; Liu, J. J.; Chang, H. Y.; Sun, Y. E.; Yin, N. L. Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 2015, 7, 24396–24402.

    Article  CAS  Google Scholar 

  92. Li, D.; Castillo, A. E. D. R.; Jussila, H.; Ye, G. J.; Ren, Z. Y.; Bai, J. T.; Chen, X. H.; Lipsanen, H.; Sun, Z. P.; Bonaccorso, F. Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 2016, 4, 17–23.

    Article  Google Scholar 

  93. Zhang, Y. Q.; Dong, N. N.; Tao, H. C.; Yan, C.; Huang, J. W.; Liu, T. F.; Robertson, A. W.; Texter, J.; Wang, J.; Sun, Z. Y. Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 2017, 29, 6445–6456.

    Article  CAS  Google Scholar 

  94. Korolkov, V. V.; Timokhin, I. G.; Haubrichs, R.; Smith, E. F.; Yang, L. X.; Yang, S. H.; Champness, N. R.; Schröder, M.; Beton, P. H. Supramolecular networks stabilise and functionalise black phosphorus. Nat. Commun. 2017, 8, 1385.

    Article  Google Scholar 

  95. Zhao, Y. H.; Zhou, Q. H.; Li, Q.; Yao, X. J.; Wang, J. L. Passivation of black phosphorus via self-assembled organic monolayers by van der waals epitaxy. Adv. Mater. 2017, 29, 1603990.

    Article  Google Scholar 

  96. Zhang, Q. K.; Liu, Y. N.; Lai, J. W.; Qi, S. M.; An, C. H.; Lu, Y.; Duan, X. X.; Pang, W.; Zhang, D. H.; Sun, D. et al. Liquid phase mass production of air-stable black phosphorus/phospholipids nano-composite with ultralow tunneling barrier. 2D Mater. 2018, 5, 025012.

    Article  Google Scholar 

  97. Kumar, A. Simultaneous passivation and encapsulation of black phosphorus nanosheets (phosphorene) by optically active polypeptide micelles for biosensors. ACS Appl. Nano Mater. 2019, 2, 2397–2404.

    Article  CAS  Google Scholar 

  98. Wild, S.; Lloret, V.; Vega-Mayoral, V.; Vella, D.; Nuin, E.; Siebert, M.; Kolesnik-Gray, M.; Löffler, M.; Mayrhofer, K. J. J.; Gadermaier, C. et al. Monolayer black phosphorus by sequential wet-chemical surface oxidation. RSC Adv. 2019, 9, 3570–3576.

    Article  CAS  Google Scholar 

  99. Lloret, V.; Nuin, E.; Kohring, M.; Wild, S.; Löffler, M.; Neiss, C.; Krieger, M.; Hauke, F.; Görling, A.; Weber, H. B. et al. Noncovalent functionalization and passivation of black phosphorus with optimized perylene diimides for hybrid field effect transistors. Adv. Mater. Interfaces 2020, 7, 2001290.

    Article  CAS  Google Scholar 

  100. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

    Article  CAS  Google Scholar 

  101. Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

    Article  CAS  Google Scholar 

  102. Hu, H. G.; Gao, H.; Gao, L. L.; Li, F.; Xu, N.; Long, X. F.; Hu, Y. P.; Jin, J.; Ma, J. T. Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 2018, 10, 5834–5839.

    Article  CAS  Google Scholar 

  103. Wei, Y. Q.; Fang, W. H.; Long, R. Covalent functionalized black phosphorus greatly inhibits nonradiative charge recombination: A time domain ab initio study. J. Phys. Chem. Lett. 2020, 11, 478–484.

    Article  CAS  Google Scholar 

  104. Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

    Article  CAS  Google Scholar 

  105. Sofer, Z.; Luxa, J.; Bouša, D.; Sedmidubský, D.; Lazar, P.; Hartman, T.; Hardtdegen, H.; Pumera, M. The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem., Int. Ed. 2017, 56, 9891–9896.

    Article  CAS  Google Scholar 

  106. van Druenen, M.; Davitt, F.; Collins, T.; Glynn, C.; O’Dwyer, C.; Holmes, J. D.; Collins, G. Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 2018, 30, 4667–4674.

    Article  CAS  Google Scholar 

  107. Zhao, Y. T.; Wang, H. Y.; Huang, H.; Xiao, Q. L.; Xu, Y. H.; Guo, Z. N.; Xie, H. H.; Shao, J. D.; Sun, Z. B.; Han, W. J. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003–5007.

    Article  CAS  Google Scholar 

  108. Feng, Q. L.; Liu, H. Y.; Zhu, M. J.; Shang, J.; Liu, D.; Cui, X. Q.; Shen, D. Q.; Kou, L. Z.; Mao, D.; Zheng, J. B. et al. Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 2018, 10, 9679–9687.

    Article  CAS  Google Scholar 

  109. Liu, Y. J.; Gao, P. F.; Zhang, T. M.; Zhu, X. J.; Zhang, M. M.; Chen, M. Q.; Du, P. W.; Wang, G. W.; Ji, H. X.; Yang, J. L. et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement. Angew. Chem., Int. Ed. 2019, 58, 1479–1483.

    Article  CAS  Google Scholar 

  110. Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996–7002.

    Article  CAS  Google Scholar 

  111. Yan, S. C.; Song, H. Z.; Wan, L. F.; Lin, S. R.; Wu, H.; Shi, Y.; Yao, J. Hydroxyl-assisted phosphorene stabilization with robust device performances. Nano Lett. 2020, 20, 81–87.

    Article  CAS  Google Scholar 

  112. Wu, S.; He, F.; Xie, G. X.; Bian, Z. L.; Luo, J. B.; Wen, S. Z. Black phosphorus: Degradation favors lubrication. Nano Lett. 2018, 18, 5618–5627.

    Article  CAS  Google Scholar 

  113. Yang, S.; Kim, A.; Park, J.; Kwon, H.; Lanh, P. T.; Hong, S.; Kim, K. J.; Kim, J. W. Thermal annealing of black phosphorus for etching and protection. Appl. Surf. Sci. 2018, 457, 773–779.

    Article  CAS  Google Scholar 

  114. Mitrović, A.; Wild, S.; Lloret, V.; Fickert, M.; Assebban, M.; Márkus, B. G.; Simon, F.; Hauke, F.; Abellán, G.; Hirsch, A. Interface amorphization of two-dimensional black phosphorus upon treatment with diazonium salts. Chem. -Eur. J. 2020, 27, 3361–3366.

    Article  Google Scholar 

  115. Jellett, C.; Plutnar, J.; Pumera, M. Prospects for functionalizing elemental 2D pnictogens: A study of molecular models. ACS Nano 2020, 14, 7722–7733.

    Article  CAS  Google Scholar 

  116. Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000–5007.

    Article  CAS  Google Scholar 

  117. Li, X. B.; Guo, P.; Cao, T. F.; Liu, H.; Lau, W. M.; Liu, L. M. Structures, stabilities and electronic properties of defects in monolayer black phosphorus. Sci. Rep. 2015, 5, 10848.

    Article  CAS  Google Scholar 

  118. Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

    Article  Google Scholar 

  119. Feng, X. W.; Kulish, V. V.; Wu, P.; Liu, X. K.; Ang, K. W. Anomalously enhanced thermal stability of phosphorene via metal adatom doping: An experimental and first-principles study. Nano Res. 2016, 9, 2687–2695.

    Article  CAS  Google Scholar 

  120. Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y. et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408–9415.

    Article  CAS  Google Scholar 

  121. Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145–2151.

    Article  CAS  Google Scholar 

  122. Lv, W. M.; Yang, B. C.; Wang, B. C.; Wan, W. H.; Ge, Y. F.; Yang, R. L.; Hao, C. X.; Xiang, J. Y.; Zhang, B. S.; Zeng, Z. M. et al. Sulfur-doped black phosphorus field-effect transistors with enhanced stability. ACS Appl. Mater. Interfaces 2018, 10, 9663–9668.

    Article  CAS  Google Scholar 

  123. Caporali, M.; Serrano-Ruiz, M.; Telesio, F.; Heun, S.; Verdini, A.; Cossaro, A.; Dalmiglio, M.; Goldoni, A.; Peruzzini, M. Enhanced ambient stability of exfoliated black phosphorus by passivation with nickel nanoparticles. Nanotechnology 2020, 31, 275708.

    Article  CAS  Google Scholar 

  124. Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.

    Article  CAS  Google Scholar 

  125. Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. 2015, 51, 12068–12071.

    Article  CAS  Google Scholar 

  126. Zhang, W. T.; Wang, Y. R.; Zhang, D. H.; Yu, S. X.; Zhu, W. X.; Wang, J.; Zheng, F. Q.; Wang, S. X.; Wang, J. L. A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale 2015, 7, 10210–10217.

    Article  CAS  Google Scholar 

  127. Zhao, W. C.; Xue, Z. M.; Wang, J. F.; Jiang, J. Y.; Zhao, X. H.; Mu, T. C. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 2015, 7, 27608–27612.

    Article  CAS  Google Scholar 

  128. Chaban, V. V.; Fileti, E. E.; Prezhdo, O. V. Imidazolium ionic liquid mediates black phosphorus exfoliation while preventing phosphorene decomposition. ACS Nano 2017, 11, 6459–6466.

    Article  CAS  Google Scholar 

  129. Abellán, G.; Wild, S.; Lloret, V.; Scheuschner, N.; Gillen, R.; Mundloch, U.; Maultzsch, J.; Varela, M.; Hauke, F.; Hirsch, A. Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 2017, 139, 10432–10440.

    Article  Google Scholar 

  130. Walia, S.; Balendhran, S.; Ahmed, T.; Singh, M.; El-Badawi, C.; Brennan, M. D.; Weerathunge, P.; Karim, N.; Rahman, F.; Rassell, A. et al. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 2017, 29, 1700152.

    Article  Google Scholar 

  131. Lloret, V.; Ángel Rivero-Crespo, M.; Alejandro Vidal-Moya, J.; Wild, S.; Doménech-Carbó, A.; Heller, B. S. J.; Shin, S.; Steinrück, H. P.; Maier, F.; Hauke, F. et al. Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters. Nat. Commun. 2019, 10, 509.

    Article  Google Scholar 

  132. Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.

    Article  Google Scholar 

  133. Hu, C. X.; Xiao, Q.; Ren, Y. Y.; Zhao, M.; Dun, G. H.; Wu, H. R.; Li, X. Y.; Yang, Q. Q.; Sun, B.; Peng, Y. et al. Polymer ionic liquid stabilized black phosphorus for environmental robust flexible optoelectronics. Adv. Funct. Mater. 2018, 28, 1805311.

    Article  Google Scholar 

  134. Tejeda-Serrano, M.; Lloret, V.; Márkus, B. G.; Simon, F.; Hauke, F.; Hirsch, A.; Doménech-Carbó, A.; Abellan, G.; Leyva-Pérez, A. Few-layer black phosphorous catalyzes radical additions to alkenes faster than low-valence metals. ChemCatChem 2020, 12, 2226–2232.

    Article  CAS  Google Scholar 

  135. Abellán, G.; Neiss, C.; Lloret, V.; Wild, S.; Chacón-Torres, J. C.; Werbach, K.; Fedi, F.; Shiozawa, H.; Görling, A.; Peterlik, H. et al. Exploring the formation of black phosphorus intercalation compounds with alkali metals. Angew. Chem., Int. Ed. 2017, 56, 15267–15273.

    Article  Google Scholar 

  136. Zhang, L.; Gao, L. F.; Li, L. X.; Hu, C. X.; Yang, Q. Q.; Zhu, Z. Y.; Peng, R.; Wang, Q.; Peng, Y.; Jin, J. et al. Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2018, 2, 1700–1706.

    Article  CAS  Google Scholar 

  137. Wild, S.; Dinh, X. T.; Maid, H.; Hauke, F.; Abellán, G.; Hirsch, A. Quantifying the covalent functionalization of black phosphorus. Angew. Chem., Int. Ed. 2020, 59, 20230–20234.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2018YFA0209100), and the National Natural Science Foundation of China (Nos. 61991431 and 61921005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shancheng Yan or Yi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Wu, H., Ren, T. et al. Developments in stability and passivation strategies for black phosphorus. Nano Res. 14, 4386–4397 (2021). https://doi.org/10.1007/s12274-021-3385-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3385-0

Keywords

Navigation