Skip to main content
Log in

Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heavy-metal-free silver based I-III-VI semiconductor nanocrystals (NCs), including ternary silver indium sulfide (AgInS2) and derivative quaternary silver indium zinc sulfide (i.e., AgInZn2S4) NCs, possess advantages of low toxicity, and size-tunable band gaps approaching near-infrared spectral range, which make them candidates for use in optoelectronic and biological devices. Herein, we report syntheses of AgInS2 based NCs starting from In2S3 template, which have been performed both in organic and aqueous phase through cation exchange. As a result, ternary silver indium sulfide and quaternary silver indium zinc sulfide NCs are obtained in both organic and aqueous media, and confirmed to be orthorhombic AgInS2 NCs and hexagonal AgInZn2S4 NCs, respectively. Furthermore, the aqueous AgInZn2S4 NCs with red emission and low cytotoxicity are explored for the cancer cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.

    CAS  Google Scholar 

  2. Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 2012, 41, 4067–4085.

    CAS  Google Scholar 

  3. Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087.

    CAS  Google Scholar 

  4. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

    CAS  Google Scholar 

  5. Yuan, M. J.; Liu, M. X.; Sargent, E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1, 16016.

    CAS  Google Scholar 

  6. Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

    CAS  Google Scholar 

  7. Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.

    CAS  Google Scholar 

  8. Chen, B. K.; Susha, A. S.; Reckmeier, C. J.; Kershaw, S. V.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Mesoporous aluminum hydroxide synthesized by a single-source precursor-decomposition approach as a high-quantum-yield blue phosphor for UV-pumped white-light-emitting diodes. Adv. Mater. 2017, 29, 1604284.

    Google Scholar 

  9. Chen, B. K.; Zhong, H. Z.; Wang, M. X.; Liu, R. B.; Zou, B. S. Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale 2013, 5, 3514–3519.

    CAS  Google Scholar 

  10. Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.

    CAS  Google Scholar 

  11. Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

    CAS  Google Scholar 

  12. Miao, J. L.; Zhang, F. J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791.

    CAS  Google Scholar 

  13. McHugh, K. J.; Jing, L. H.; Behrens, A. M.; Jayawardena, S.; Tang, W.; Gao, M. Y.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 2018, 30, 1706356.

    Google Scholar 

  14. Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.

    CAS  Google Scholar 

  15. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.

    CAS  Google Scholar 

  16. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    CAS  Google Scholar 

  17. Gao, N.; Yang, W.; Nie, H. L.; Gong, Y. Q.; Jing, J.; Gao, L. J.; Zhang, X. L. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron. 2017, 96, 300–307.

    CAS  Google Scholar 

  18. Rogach, A.; Kershaw, S. V.; Burt, M.; Harrison, M. T.; Kornowski, A.; Eychmuller, A.; Weller, H. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv. Mater. 1999, 11, 552–555.

    CAS  Google Scholar 

  19. Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782–5790.

    CAS  Google Scholar 

  20. Radtchenko, I. L.; Sukhorukov, G. B.; Gaponik, N.; Kornowski, A.; Rogach, A. L.; Möhwald, H. Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres. Adv. Mater. 2001, 13, 1684–1687.

    CAS  Google Scholar 

  21. Rogach, A. L. Binary superlattices of nanoparticles: Self-assembly leads to “metamaterials”. Angew. Chem., Int. Ed. 2003, 43, 148–149.

    Google Scholar 

  22. Rogach, A. L.; Eychmuller, A.; Hickey, S. G.; Kershaw, S. V. Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 2007, 3, 536–557.

    CAS  Google Scholar 

  23. Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030.

    CAS  Google Scholar 

  24. Pandya, R.; Chen, R. Y. S.; Cheminal, A.; Dufour, M.; Richter, J. M.; Thomas, T. H.; Ahmed, S.; Sadhanala, A.; Booker, E. P.; Divitini, G. et al. Exciton-phonon interactions govern charge-transfer-state dynamics in CdSe/CdTe two-dimensional colloidal heterostructures. J. Am. Chem. Soc. 2018, 140, 14097–14111.

    CAS  Google Scholar 

  25. Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.

    Google Scholar 

  26. Chen, B. K.; Zhong, H. Z.; Li, R.; Zhou, Y.; Ding, Y. Q.; Li, Y. F.; Zou, B. S. Conjugated polymer-assisted preparation of CdSe nanospheres and their photovoltaic properties. Sci. Adv. Mater. 2012, 4, 342–345.

    CAS  Google Scholar 

  27. Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819.

    CAS  Google Scholar 

  28. Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I-III-VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435–445.

    CAS  Google Scholar 

  29. Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J. Y. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193–6216.

    CAS  Google Scholar 

  30. Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.

    CAS  Google Scholar 

  31. Yarema, O.; Yarema, M.; Wood, V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater. 2018, 30, 1446–1461.

    CAS  Google Scholar 

  32. Berends, A. C.; Mangnus, M. J. J.; Xia, C. H.; Rabouw, F. T.; Donega, C. D. M. Optoelectronic properties of ternary I-III-VI2 semiconductor nanocrystals: Bright prospects with elusive origins. J. Phys. Chem. Lett. 2019, 10, 1600–1016.

    CAS  Google Scholar 

  33. Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081–2088.

    CAS  Google Scholar 

  34. Torimoto, T.; Adachi, T.; Okazaki, K. I.; Sakuraoka, M.; Shibayama, T.; Ohtani, B.; Kudo, A.; Kuwabata, S. Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 2007, 129, 12388–12389.

    CAS  Google Scholar 

  35. Doh, H.; Hwang, S.; Kim, S. Size-tunable synthesis of nearly monodisperse Ag2S nanoparticles and size-dependent fate of the crystal structures upon cation exchange to AgInS2 nanoparticles. Chem. Mater. 2016, 28, 8123–8127.

    CAS  Google Scholar 

  36. Zeng, B; Chen, F.; Liu, Z. Y.; Guan, Z. Y.; Li, X.; Teng, F.; Tang, A. W. Seeded-mediated growth of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals from binary Ag2S seeds and the composition-tunable optical properties. J. Mater. Chem. C 2019, 7, 1307–1315.

    CAS  Google Scholar 

  37. Stroyuk, O.; Raevskaya, A.; Spranger, F.; Selyshchev, O.; Dzhagan, V.; Schulze, S.; Zahn, D. R. T.; Eychmüller, A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 2018, 122, 13648–13658.

    CAS  Google Scholar 

  38. Yang, W. T.; Gong, X. Q; Chang, J. Development of novel cadmium-free AgInS2 semiconductor nanoparticles. J. Nanosci. Nanotechnol. 2016, 16, 2172–2183.

    CAS  Google Scholar 

  39. Peng, S. J.; Zhang, S. Y.; Mhaisalkar, S. G.; Ramakrishna, S. Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. Phys. Chem. Chem. Phys. 2012, 14, 8523–8529.

    CAS  Google Scholar 

  40. Deng, D. W.; Cao, J.; Qu, L. Z.; Achilefu, S.; Gu, Y. Q. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging. Phys. Chem. Chem. Phys. 2013, 15, 5078–5083.

    CAS  Google Scholar 

  41. Uematsu, T.; Wajima, K.; Sharma, D. K.; Hirata, S.; Yamamoto, T.; Kameyama, T.; Vacha, M.; Torimoto, T.; Kuwabata, S. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater. 2018, 10, 713–726.

    CAS  Google Scholar 

  42. Liu, Z. P.; Tang, K. B.; Wang, D. K.; Wang, L. L.; Hao, Q. Y. Facile synthesis of AgInS2 hierarchical flowerlike nanoarchitectures composed of ultrathin nanowires. Nanoscale 2013, 5, 1570–1575.

    CAS  Google Scholar 

  43. Hamanaka, Y.; Ozawa, K.; Kuzuya, T. Enhancement of donor-acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J. Phys. Chem. C 2014, 118, 14562–14568.

    CAS  Google Scholar 

  44. Tang, X. S.; Ho, W. B. A.; Xue, J. M. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C 2012, 116, 9769–9773.

    CAS  Google Scholar 

  45. Chen, B. K.; Chang, S.; Li, D. Y.; Chen, L. L.; Wang, Y. T.; Chen, T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem. Mater. 2015, 27, 5949–5956.

    CAS  Google Scholar 

  46. Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6943.

    CAS  Google Scholar 

  47. Morris, A. L.; Lin, C.; Benjamin, S. E.; Devarasetty, V. V. N. M.; Tilluck, W. R.; Lozano, E. I.; Hamo, H.; Aguilar, X. A.; Van Patten, P. G. Toward improved scalability of cation exchange reactions of metal chalcogenide nanocrystals. Chem. Mater. 2017, 29, 6596–6600.

    CAS  Google Scholar 

  48. De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

    CAS  Google Scholar 

  49. Di, Q. M.; Zhu, X. Y.; Liu, J.; Zhan, X. B.; Shang, H. S.; Chen, W. X.; Liu, J. J.; Rong, H. P.; Xu, M.; Zhang, J. T. High-performance quantum dots with synergistic doping and oxide shell protection synthesized by cation exchange conversion of ternary-composition nanoparticles. J. Phys. Chem. Lett. 2019, 10, 2606–2615.

    CAS  Google Scholar 

  50. Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852–4857.

    CAS  Google Scholar 

  51. Wang, H.; Butler, D. J.; Straus, D. B.; Oh, N.; Wu, F. K.; Guo, J. C.; Xue, K.; Lee, J. D.; Murray, C. B.; Kagan, C. R. Air-stable CuInSe2 nanocrystal transistors and circuits via post-deposition cation exchange. ACS Nano 2019, 13, 2324–2333.

    CAS  Google Scholar 

  52. Park, K. H.; Jang, K.; Son, S. U. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. Angew. Chem., Int. Ed. 2006, 45, 4608–4612.

    CAS  Google Scholar 

  53. Horani, F.; Lifshitz, E. Unraveling the growth mechanism forming stable γ-In2S3 and β-In2S3 colloidal nanoplatelets. Chem. Mater. 2019, 31, 1784–1793.

    CAS  Google Scholar 

  54. Bujak, P.; Wróbel, Z.; Penkala, M.; Kotwica, K.; Kmita, A.; Gajewska, M.; Ostrowski, A.; Kowalik, P.; Pron, A. Highly luminescent Ag-In-Zn-S quaternary nanocrystals: Growth mechanism and surface chemistry elucidation. Inorg. Chem. 2019, 58, 1358–1370.

    CAS  Google Scholar 

  55. Ramirez, O.; Ramasamy, P.; Choi, Y. C.; Lee, J. S. Morphology transformation of chalcogenide nanoparticles triggered by cation exchange reactions. Chem. Mater. 2019, 31, 268–276.

    CAS  Google Scholar 

  56. Wang, C. X.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M. X.; Li, X. W.; Sun, H. C.; Lin, Q.; Yang, B. Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: Tunable photoluminescence from red to near infrared. Small 2012, 8, 3137–3142.

    CAS  Google Scholar 

  57. Reddy, D. A.; Ma, R.; Choi, M. Y.; Kim, T. K. Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl. Surf. Sci. 2015, 324, 725–735.

    Google Scholar 

  58. Wang, Y. Q.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance. Nanoscale 2015, 7, 6185–6192.

    CAS  Google Scholar 

  59. Luo, Z. S.; Zhang, H.; Huang, J.; Zhong, X. H. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 2012, 377, 27–33.

    CAS  Google Scholar 

  60. Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826–24836.

    CAS  Google Scholar 

  61. Rogach, A. L.; Ogris, M. Near-infrared-emitting semiconductor quantum dots for tumor imaging and targeting. Curr. Opin. Mol. Ther. 2010, 12, 331–339.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Haizheng Zhong for useful discussions. This work was supported by the National Key R&D Program of China (No. 2017YFB1002900), the Natural Science Foundation of Youth Fund Project of China (No. 51602024), the National Natural Science Foundation of China (No. 2157015), the Talent Introduction Plan of Overseas Top Ranking Professors by the State Administration of Foreign Expert Affairs (No. MSBJLG040), and the Germany/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the German Academic Exchange Service (No. G-CityU106/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingkun Chen.

Electronic Supplementary Material

12274_2020_3229_MOESM1_ESM.pdf

Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Zhang, R., Chen, B. et al. Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media. Nano Res. 14, 2321–2329 (2021). https://doi.org/10.1007/s12274-020-3229-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3229-3

Keywords

Navigation