Skip to main content
Log in

Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of membranes featuring carbon nanotubes (CNTs) have provided possibilities of next-generation solar desalination technologies. For solar desalination, the microstructures and interactions between the filter membrane and seawater play a crucial role in desalination performance. Understanding the mechanisms of water evaporation and ion rejection in confined pores or channels is necessary to optimize the desalting process. Here, using non-equilibrium molecular dynamics simulations, we found that continuous water-water hydrogen bonding network across the rims of CNTs is the key factor in facilitating water transport through CNTs. With the continuous hydrogen bonding network, the water flux is two times of that without the continuous hydrogen bonding network. In CNT arrays, each CNT transports water molecules and rejects salt ions independently. Based on these observations, using CNT arrays consisted with densely packed thin CNTs is the most advisable strategy for evaporation desalination, possessing high transport flux as well as maintaining high salt rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M, C.; Yadav, A. Water desalination system using solar heat: A review. Renew. Sust. Energy Rev. 2017, 67, 1308–1330.

    Article  Google Scholar 

  2. Yang, T. S.; Lin, H.; Lin, K. T.; Jia, B. H. Carbon-based absorbers for solar evaporation: Steam generation and beyond. Sustain. Mater. Technol. 2020, 25, e00182.

    CAS  Google Scholar 

  3. Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. W.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

    Article  Google Scholar 

  4. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    Article  CAS  Google Scholar 

  5. Wang, M.; Meng, H. Q.; Wang, D.; Yin, Y. J.; Stroeve, P.; Zhang, Y. M.; Sheng, Z. Z.; Chen, B. Y.; Zhan, K.; Hou, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 31, 1805130.

    Article  Google Scholar 

  6. Wang, M.; Hou, Y.; Yu, L.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937–6946.

    Article  CAS  Google Scholar 

  7. Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 2015, 367, 37–48.

    Article  CAS  Google Scholar 

  8. Humplik, T.; Lee, J.; O’Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R. et al. Nanostructured materials for water desalination. Nanotechnology 2011, 22, 292001.

    Article  CAS  Google Scholar 

  9. Yang, H. Y.; Han, Z. J.; Yu, S. F.; Pey, K. L.; Ostrikov, K.; Karnik, R. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 2013, 4, 2220.

    Article  Google Scholar 

  10. Zou, S. Q.; Smith, E. D.; Lin, S. H.; Martin, S. M.; He, Z. Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubes. Environ. Int. 2019, 131, 104970.

    Article  CAS  Google Scholar 

  11. Shawky, H. A.; Chae, S. R.; Lin, S. H.; Wiesner, M. R. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 2011, 272, 46–50.

    Article  CAS  Google Scholar 

  12. Vikrant, K.; Kumar, V.; Vellingiri, K.; Kim, K. H. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater. Nano Res. 2019, 12, 1489–1507.

    Article  CAS  Google Scholar 

  13. Zhu, Y. L.; Zhan, K.; Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 2018, 12, 908–911.

    Article  CAS  Google Scholar 

  14. Hou, X.; Jiang, L. Learning from nature: Building bio-inspired smart nanochannels. ACS Nano 2009, 3, 3339–3342.

    Article  CAS  Google Scholar 

  15. Aoun, B.; Russo, D. Nano-confinement of biomolecules: Hydrophilic confinement promotes structural order and enhances mobility of water molecules. Nano Res. 2016, 9, 273–281.

    Article  CAS  Google Scholar 

  16. Joseph, S.; Aluru, N. R. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008, 8, 452–458.

    Article  CAS  Google Scholar 

  17. Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112, 1427–1434.

    Article  CAS  Google Scholar 

  18. Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.

    Article  CAS  Google Scholar 

  19. Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190.

    Article  CAS  Google Scholar 

  20. Pascal, T. A.; Goddard, W. A.; Jung, Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc. Natl. Acad. Sci. USA 2011, 108, 11794–11798.

    Article  CAS  Google Scholar 

  21. Chan, Y.; Hill, J. M. Modeling on ion rejection using membranes comprising ultra-small radii carbon nanotubes. Eur. Phys. J. B 2012, 85, 56.

    Article  Google Scholar 

  22. Rikhtehgaran, S.; Lohrasebi, A. Water desalination by a designed nanofilter of graphene-charged carbon nanotube: A molecular dynamics study. Desalination 2015, 365, 176–181.

    Article  CAS  Google Scholar 

  23. Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

    Article  CAS  Google Scholar 

  24. Secchi, E.; Marbach, S.; Niguès, A.; Stein, D.; Siria, A.; Bocquet, L. Massive radius-dependent flow slippage in carbon nanotubes. Nature 2016, 537, 210–213.

    Article  CAS  Google Scholar 

  25. Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29.

    Article  Google Scholar 

  26. Rivera, J. L.; Starr, F. W. Rapid transport of water via a carbon nanotube syringe. J. Phys. Chem. C 2010, 114, 3737–3742.

    Article  CAS  Google Scholar 

  27. Choi, W.; Ulissi, Z. W.; Shimizu, S. F. E.; Bellisario, D. O.; Ellison, M. D.; Strano, M. S. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nat. Commun. 2013, 4, 2397.

    Article  Google Scholar 

  28. Song, C.; Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 2009, 113, 7642–7649.

    Article  CAS  Google Scholar 

  29. Chan, Y.; Hill, J. M. Ion selectivity using membranes comprising functionalized carbon nanotubes. J. Math. Chem. 2013, 51, 1258–1273.

    Article  Google Scholar 

  30. Corry, B. Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology. Energy Environ. Sci. 2011, 4, 751–759.

    Article  CAS  Google Scholar 

  31. Fornasiero, F.; Park, H. G.; Holt, J. K.; Stadermann, M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 2008, 105, 17250–17255.

    Article  CAS  Google Scholar 

  32. Liu, J.; Shi, G. S.; Guo, P.; Yang, J. R.; Fang, H. P. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 2015, 115, 164502.

    Article  Google Scholar 

  33. Melillo, M.; Zhu, F. Q.; Snyder, M. A.; Mittal, J. Water transport through nanotubes with varying interaction strength between tube wall and water. J. Phys. Chem. Lett. 2011, 2, 2978–2983.

    Article  CAS  Google Scholar 

  34. Zhao, K. W.; Wu, H. Y. Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett. 2015, 15, 3664–3668.

    Article  CAS  Google Scholar 

  35. Qiu, H.; Shen, R.; Guo, W. L. Vibrating carbon nanotubes as water pumps. Nano Res. 2011, 4, 284–289.

    Article  CAS  Google Scholar 

  36. Razmkhah, M.; Moosavi, F.; Mosavian, M. T. H.; Ahmadpour, A. Does electric or magnetic field affect reverse osmosis desalination? Desalination 2018, 432, 55–63.

    Article  CAS  Google Scholar 

  37. Köfinger, J.; Hummer, G.; Dellago, C. Single-file water in nanopores. Phys. Chem. Chem. Phys. 2011, 13, 15403–15417.

    Article  Google Scholar 

  38. Ohba, T.; Kaneko, K.; Endo, M.; Hata, K.; Kanoh, H. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds. Langmuir 2013, 29, 1077–1082.

    Article  CAS  Google Scholar 

  39. Tunuguntla, R. H.; Henley, R. Y.; Yao, Y. C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792–796.

    Article  CAS  Google Scholar 

  40. Lee, J.; Laoui, T.; Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nat. Nanotechnol. 2014, 9, 317–323.

    Article  CAS  Google Scholar 

  41. Sisan, T. B.; Lichter, S. The end of nanochannels. Microfluid Nanofluidics 2011, 11, 787–791.

    Article  Google Scholar 

  42. Walther, J. H.; Ritos, K.; Cruz-Chu, E. R.; Megaridis, C. M.; Koumoutsakos, P. Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 2013, 13, 1910–1914.

    Article  CAS  Google Scholar 

  43. Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett. 2010, 10, 4067–4073.

    Article  CAS  Google Scholar 

  44. Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P. et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641.

    Article  CAS  Google Scholar 

  45. Swiatla-Wojcik, D. Evaluation of the criteria of hydrogen bonding in highly associated liquids. Chem. Phys. 2007, 342, 260–266.

    Article  CAS  Google Scholar 

  46. Kalinichev, A. G.; Bass, J. D. Hydrogen bonding in supercritical water: A Monte Carlo simulation. Chem. Phys. Lett. 1994, 231, 301–307.

    Article  CAS  Google Scholar 

  47. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics; Sandia National Labs., Albuquerque, NM (United States): 1993.

    Book  Google Scholar 

  48. Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164.

    Article  Google Scholar 

  49. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984, 106, 765–784.

    Article  CAS  Google Scholar 

  50. Izadi, S.; Onufriev, A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 2016, 145, 074501.

    Article  Google Scholar 

  51. Cygan, R. T.; Liang, J. J.; Kalinichev, A. G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266.

    Article  CAS  Google Scholar 

  52. Holz, M.; Heil, S. R.; Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742.

    Article  CAS  Google Scholar 

  53. Easteal, A. J.; Price, W. E.; Woolf, L. A. Diaphragm cell for high-temperature diffusion measurements. Tracer diffusion coefficients for water to 363 K. J. Chem. Soc., Faraday Trans. 1 1989, 85, 1091–1097.

    Article  CAS  Google Scholar 

  54. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge supports from the National Natural Science Foundation of China (Grant Nos. 21975209, 21673197, 51706191, and 21621091), the National Key R&D Program of China (Grant No. 2018YFA0209500), the 111 Project (Grant No. B16029), the Fundamental Research Funds for the Central Universities (Grant No. 20720190037), the Natural Science Foundation of Fujian Province of China (Grant No. 2018J06003), and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Hou.

Electronic Supplementary Material

12274_2020_3173_MOESM1_ESM.pdf

Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination

Supplementary material, approximately 24.7 MB.

Supplementary material, approximately 25.9 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Wang, M., Chen, X. et al. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 14, 2171–2178 (2021). https://doi.org/10.1007/s12274-020-3173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3173-2

Keywords

Navigation