Skip to main content
Log in

A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

NiFe layered double hydroxide (NiFe-LDH) nanosheets and metal-nitrogen-carbon materials (M-N-C, M = Ni, Fe, Co, etc.) are supreme catalysts in the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) process, respectively. Nevertheless, the monotonic performance and insufficient stability severely hamper their practical application in rechargeable batteries. Herein, we simultaneously combine ultrathin NiFe-LDH nanowalls with renewable soybean-derived Fe-N-C matrix to obtain a hybrid materials (NiFe-LDH/FeSoy-CNSs-A), which exhibits robust catalytic activities for OER (Ej=10 = 1.53 V vs. RHE) and ORR (E1/2 = 0.91 V vs. RHE), with a top-notch battery parameters and stability in assembled rechargeable Zn-air batteries. Intensive investigations indicate that the vertically dispersed NiFe-LDH nanosheets, Fe-N-C matrix derived from soybean and the strong synergy between them are responsible for the unprecedented OER and ORR performances. The key role of intrinsic N defects involved in the hybrid materials is firstly specified by ultrasoundassisted extraction of soy protein from soybean. The exquisite design can facilitate the utilization of sustainable biomass-derived catalysts, and the mechanism investigations of N defects and oxygenic groups on the structure-activity relationship can stimulate the progress of other functional hybrid electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  2. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

  3. Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  CAS  Google Scholar 

  4. Yin, J.; Li, Y. X.; Lv, F.; Fan, Q. H.; Zhao, Y. Q.; Zhang, Q. L.; Wang, W.; Cheng, F. Y; Xi, P. X.; Guo, S. J. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 2017, 11, 2275–2283.

    Article  CAS  Google Scholar 

  5. Li, Z. H.; Shao, M. F.; Yang, Q. H.; Tang, Y.; Wei, M.; Evans, D. G.; Duan, X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy 2017, 37, 98–107.

    Article  CAS  Google Scholar 

  6. Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461–466.

    Article  CAS  Google Scholar 

  7. Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

    Article  CAS  Google Scholar 

  8. Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288–2295.

    Article  CAS  Google Scholar 

  9. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

    Article  CAS  Google Scholar 

  10. Feng, J. X.; Ding, L. X.; Ye, S. H.; He, X. J.; Xu, H.; Tong, Y. X.; Li, G. R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051–7057.

    Article  CAS  Google Scholar 

  11. Dresp, S.; Luo, F.; Schmack, R.; Kühl, S.; Gliech, M.; Strasser, P. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 2016, 9, 2020–2024.

    Article  CAS  Google Scholar 

  12. Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

    Article  CAS  Google Scholar 

  13. Tan, L.; Su, Z. B.; Yang, R. Q.; Tao, J.; Zhao, D. D.; Zhang, Z.; Wen, F. S. Oxygen evolution catalytic performance of quantum dot nickel-iron double hydroxide/reduced graphene oxide composites. Mater. Lett. 2018, 231, 24–27.

    Article  CAS  Google Scholar 

  14. Zhan, T. R.; Liu, X. L.; Lu, S. S.; Hou, W. G. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B 2017, 205, 551–558.

    Article  CAS  Google Scholar 

  15. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

    Article  CAS  Google Scholar 

  16. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  CAS  Google Scholar 

  17. Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

    Article  CAS  Google Scholar 

  18. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

    Article  CAS  Google Scholar 

  19. Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.

    Article  CAS  Google Scholar 

  20. Ma, Y.; Wang, Y. C.; Xie, D. H.; Gu, Y.; Zhang, H. M.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J.; Wong, P. K. NiFe-layered double hydroxide nanosheet arrays supported on carbon cloth for highly sensitive detection of nitrite. ACS Appl. Mater. Interfaces 2018, 10, 6541–6551.

    Article  CAS  Google Scholar 

  21. Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

    Article  CAS  Google Scholar 

  22. Ferrero, G. A.; Preuss, K.; Marinovic, A.; Jorge, A. B.; Mansor, N.; Brett, D. J. L.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 2016, 10, 5922–5932.

    Article  CAS  Google Scholar 

  23. Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.

    Article  CAS  Google Scholar 

  24. Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752–758.

    Article  CAS  Google Scholar 

  25. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    Article  CAS  Google Scholar 

  26. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  Google Scholar 

  27. Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

    Article  CAS  Google Scholar 

  28. Kang, D. M.; Liu, Q. L.; Gu, J. J.; Su, Y. S.; Zhang, W.; Zhang, D. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 2015, 9, 11225–11233.

    Article  CAS  Google Scholar 

  29. Wan, W. J.; Liu, X. J.; Li, H. Y.; Peng, X. Y.; Xi, D. S.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B 2019, 240, 193–200.

    Article  CAS  Google Scholar 

  30. Ding, J.; Wang, H. L.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X. H.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941–955.

    Article  CAS  Google Scholar 

  31. Gao, S. Y.; Liu, H. Y.; Geng, K. R.; Wei, X. J. Honeysuckles-derived porous nitrogen, sulfur, dual-doped carbon as high-performance metal-free oxygen electroreduction catalyst. Nano Energy 2015, 12, 785–793.

    Article  CAS  Google Scholar 

  32. Ding, Y. J.; Niu, Y. C.; Yang, J.; Ma, L.; Liu, J. G.; Xiong, Y. J.; Xu, H. X. A metal-amino acid complex-derived bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Small 2016, 12, 5414–5421.

    Article  CAS  Google Scholar 

  33. Gong, X.; Liu, S. S.; Ouyang, C. Y.; Strasser, P.; Yang, R. Z. Nitrogen- and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal. 2015, 5, 920–927.

    Article  CAS  Google Scholar 

  34. Guo, C. Z.; Liao, W. L.; Chen, C. G. Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures. J. Power Sources 2014, 269, 841–847.

    Article  CAS  Google Scholar 

  35. Liu, Y. Y.; Ruan, J. M.; Sang, S. B.; Zhou, Z. C.; Wu, Q. M. Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim. Acta 2016, 215, 388–397.

    Article  CAS  Google Scholar 

  36. Zhai, Y. L.; Zhu, C. Z.; Wang, E. K.; Dong, S. J. Energetic carbon-based hybrids: Green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR. Nanoscale 2014, 6, 2964–2970.

    Article  CAS  Google Scholar 

  37. Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry —a review. Innovat. Food Sci. Emerg. Technol. 2008, 9, 161–169.

    Article  CAS  Google Scholar 

  38. Preece, K. E.; Hooshyar, N.; Krijgsman, A. J.; Fryer, P. J.; Zuidam, N. J. Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J. Food Eng. 2017, 206, 1–12.

    Article  CAS  Google Scholar 

  39. Karki, B.; Lamsal, B. P.; Jung, S.; van Leeuwen, J.; Pometto III, A. L.; Grewell, D.; Khanal, S. K. Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J. Food Eng. 2010, 96, 270–278.

    Article  CAS  Google Scholar 

  40. Lu, X. Y.; Yim, W. L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901–2907.

    Article  CAS  Google Scholar 

  41. Wang, W.; Liu, Y. C.; Li, J.; Luo, J.; Fu, L.; Chen, S. L. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance orr/oer bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299–14306.

    Article  CAS  Google Scholar 

  42. Yan, M. L.; Mao, K.; Cu, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

    Article  CAS  Google Scholar 

  43. Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.

    Article  CAS  Google Scholar 

  44. Fu, G. T.; Yan, X. X.; Chen, Y. F.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 2018, 30, 1704609.

    Article  CAS  Google Scholar 

  45. Jiang, L.; Yan, J. W.; Hao, L. X.; Xue, R.; Sun, G. Q.; Yi, B. L. High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 2013, 56, 146–154.

    Article  CAS  Google Scholar 

  46. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  CAS  Google Scholar 

  47. Lonkar, S. P.; Raquez, J. M.; Dubois, P. One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-Micro Lett. 2015, 7, 332–340.

    Article  CAS  Google Scholar 

  48. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  CAS  Google Scholar 

  49. Ma, S. L.; Islam, S. M.; Shim, Y.; Gu, Q. Y.; Wang, P. L.; Li, H.; Sun, G. B.; Yang, X. J.; Kanatzidis, M. G. Highly efficient iodine capture by layered double hydroxides intercalated with polysulfides. Chem. Mater. 2014, 26, 7114–7123.

    Article  CAS  Google Scholar 

  50. Yan, Y. X.; Yao, H. B.; Mao, L. B.; Asiri, A. M.; Alamry, K. A.; Marwani, H. M.; Yu, S. H. Micrometer-thick graphene oxide-layered double hydroxide nacre-inspired coatings and their properties. Small 2016, 12, 745–755.

    Article  CAS  Google Scholar 

  51. Ni, Y. M.; Yao, L. H.; Wang, Y.; Liu, B.; Cao, M. H.; Hu, C. W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 2017, 9, 11596–11604.

    Article  CAS  Google Scholar 

  52. Yu, C.; Han, X. T.; Liu, Z. B.; Zhao, C. T.; Huang, H. W.; Yang, J.; Niu, Y. Y.; Qiu, J. S. An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon 2018, 126, 437–442.

    Article  CAS  Google Scholar 

  53. Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.

    Article  CAS  Google Scholar 

  54. Kloprogge, J. T.; Hickey, L.; Frost, R. L. FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectrosc. 2004, 35, 967–974.

    Article  CAS  Google Scholar 

  55. Oliver-Tolentino, M. A.; Vázquez-Samperio, J.; Manzo-Robledo, A.; de Guadalupe González-Huerta, R.; Flores-Moreno, J. L.; Ramírez-Rosales, D.; Guzmán-Vargas, A. An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni-Fe LDH. J. Phys. Chem. C 2014, 118, 22432–22438.

    Article  CAS  Google Scholar 

  56. Wang, Y. Y.; Jiang, C. J.; Le, Y.; Cheng, B.; Yu, J. G. Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chem. Eng. J. 2019, 365, 378–388.

    Article  CAS  Google Scholar 

  57. Zheng, Y. Q.; Cheng, B.; You, W.; Yu, J. G.; Ho, W. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to congo red, methyl orange and Cr (Vi) ions. J. Hazard. Mater. 2019, 369, 214–225.

    Article  CAS  Google Scholar 

  58. Li, R.; Xu, J. S.; Ba, J. W.; Li, Y. R.; Liang, C. H.; Tang, T. Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. Int. J. Hydrogen Energy 2018, 43, 7956–7963.

    Article  CAS  Google Scholar 

  59. Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179–8183.

    Article  CAS  Google Scholar 

  60. Zhang, J. T.; Zhang, M.; Zeng, Y.; Chen, J. S.; Qiu, L. X.; Zhou, H.; Sun, C. J.; Yu, Y.; Zhu, C. Z.; Zhu, Z. H. Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 2019, 15, 1900307.

    Article  CAS  Google Scholar 

  61. Meng, Y. Y.; Voiry, D.; Goswami, A.; Zou, X. X.; Huang, X. X.; Chhowalla, M.; Liu, Z. W.; Asefa, T. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. J. Am. Chem. Soc. 2014, 136, 13554–13557.

    Article  CAS  Google Scholar 

  62. Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

    Article  CAS  Google Scholar 

  63. Zhang, M.; Cheng, H. Y.; Gong, Z. N.; Zhang, J. T.; Liu, X.; Wang, B. B.; Ban, L. N.; Zeng, Y.; Zhu, Z. H. Fabrication of chitosan-18β-glycyrrhetinic acid modified titanium implants with nanorod arrays for suppression of osteosarcoma growth and improvement of osteoblasts activity. Adv. Funct. Mater. 2017, 27, 1703932.

    Article  CAS  Google Scholar 

  64. Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478–483.

    Article  CAS  Google Scholar 

  65. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  CAS  Google Scholar 

  66. Song, H. J.; Yoon, H.; Ju, B.; Lee, G. H.; Kim, D. W. 3D architectures of quaternary Co-Ni-S-P/graphene hybrids as highly active and stable bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2018, 8, 1802319.

    Article  CAS  Google Scholar 

  67. Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

    Article  CAS  Google Scholar 

  68. Dong, Y.; Zhang, P. X.; Kou, Y. L.; Yang, Z. Y.; Li, Y. P.; Sun, X. M. A first-principles study of oxygen formation over NiFe-layered double hydroxides surface. Catal. Lett. 2015, 145, 1541–1548.

    Article  CAS  Google Scholar 

  69. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

    Article  CAS  Google Scholar 

  70. Su, X. Z.; Wang, Y.; Zhou, J.; Gu, S. Q.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292.

    Article  CAS  Google Scholar 

  71. Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.

    Article  CAS  Google Scholar 

  72. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  CAS  Google Scholar 

  73. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361–11364.

    Article  CAS  Google Scholar 

  74. Xie, J. F.; Xin, J. P.; Wang, R. X.; Zhang, X. D.; Lei, F. C.; Qu, H. C.; Hao, P.; Cui, G. W.; Tang, B.; Xie, Y. Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy 2018, 53, 74–82.

    Article  CAS  Google Scholar 

  75. Han, H.; Paik, J. W.; Ham, M.; Kim, K. M.; Park, J. K.; Jeong, Y. K. Atomic layer deposition-assisted fabrication of Co-nanoparticle/N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2002427.

    Article  CAS  Google Scholar 

  76. Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.

    Article  CAS  Google Scholar 

  77. Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.

    Article  CAS  Google Scholar 

  78. Gómez-Marín, A. M.; Feliu, J. M.; Ticianelli, E. Oxygen reduction on platinum surfaces in acid media: Experimental evidence of a CECE/DISP initial reaction path. ACS Catal. 2019, 9, 2238–2251.

    Article  CAS  Google Scholar 

  79. Singh, S. K.; Takeyasu, K.; Nakamura, J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater 2019, 31, 1804297.

    Article  CAS  Google Scholar 

  80. Liu, J. Y.; Xu, H.; Li, H. P.; Song, Y. H.; Wu, J. J.; Gong, Y. J.; Xu, L.; Yuan, S. Q.; Li, H. M.; Ajayan, P. M. In-situ formation of hierarchical 1D–3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Appl. Catal. B 2019, 243, 151–160.

    Article  CAS  Google Scholar 

  81. Liu, Q. B.; Du, L.; Fu, G. T.; Cui, Z. M.; Li, Y. T.; Dang, D.; Gao, X.; Zheng, Q.; Goodenough, J. B. Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction. Adv. Energy Mater. 2019, 9, 1803040.

    Article  CAS  Google Scholar 

  82. Kordek, K.; Jiang, L. X.; Fan, K. C.; Zhu, Z. J.; Xu, L.; Al-Mamun, M.; Dou, Y. H.; Chen, S.; Liu, P. R.; Yin, H. J. et al. Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 2019, 9, 1802936.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (Nos. CCNU19TS038 and 2019QN017), the Natural Science Foundation of Hubei Province (No. 2019CFB606), the Wuhan Planning Project of Science and Technology (No. 2018010401011294), the National Natural Science Foundation of China (Nos. 52072139, 21665007, and 21964007) and the National Natural Science Foundation of Hainan Province of China (No. 2019RC188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Sun, Ying Yu or Zhihong Zhu.

Electronic Supplementary Material

12274_2020_3168_MOESM1_ESM.pdf

A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, J., Ran, S. et al. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 14, 1175–1186 (2021). https://doi.org/10.1007/s12274-020-3168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3168-z

Keywords

Navigation