Skip to main content
Log in

In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The integration of strong near-infrared (NIR) emission, rapid lysosome escape, fast cellular excretion, and efficient total body clearance is highly desired for nanoparticles (NPs) to achieve synergistic functions in both molecular imaging and delivery. Herein, using a well-designed cyclopeptide (CP) that can spontaneously assemble into controllable nanofibers as template, a facile strategy is reported for in situ self-assembly of NIR-emitting gold NPs (AuNPs) into ordered and well-controlled one-dimensional (1D) nanostructures (AuNPs@CP) with greatly enhanced NIR emission (∼ 6 fold). Comparing with the unassembled AuNPs, the AuNPs@CP are observed to enter living cells through endocytosis, escape from lysosome rapidly, and excrete the cell fast, which shows high gene transfection efficiencies in construction of cell line with ∼ 7.5-fold overexpression of p53 protein. Furthermore, the AuNPs@CP exhibit high in vivo diffusibility and total body clearance efficiency with minimized healthy organ retention, which are also demonstrated to be good nanovectors for plasmid complementary deoxyribonucleic acid 3.1 (pcDNA3.1)(+)-internal ribosome entry site (IRES)-green fluorescent protein (GFP)-p53 plasmid with efficient p53 gene over-expression in tumor site. This facile in situ strategy in fabricating highly luminescent 1D nanostructures provides a promising approach toward future translatable multifunctional nanostructures for delivering, tracking, and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crawford, S. E.; Hartmann, M. J.; Millstone, J. E. Surface chemistry-mediated near-infrared emission of small coinage metal nanoparticles. Acc. Chem. Res. 2019, 52, 695–703.

    Article  CAS  Google Scholar 

  2. Wu, Z. N.; Du, Y. H.; Liu, J. L.; Yao, Q. F.; Chen, T. K.; Cao, Y. T.; Zhang, H.; Xie, J. P. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139–8144.

    Article  CAS  Google Scholar 

  3. Gong, L. S.; Chen, Y.; He, K.; Liu, J. B. Surface coverage-regulated cellular interaction of ultrasmall luminescent gold nanoparticles. ACS Nano 2019, 13, 1893–1899.

    Article  CAS  Google Scholar 

  4. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.

    Article  CAS  Google Scholar 

  5. Yu, M. X.; Xu, J.; Zheng, J. Renal clearable luminescent gold nanoparticles: From the bench to the clinic. Angew. Chem., Int. Ed. 2019, 58, 4112–4128.

    Article  CAS  Google Scholar 

  6. Li, L.; Yang, Z.; Fan, W. P.; He, L. C.; Cui, C.; Zou, J. H.; Tang, W.; Jacobson, O.; Wang, Z. T.; Niu, G. et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 2020, 30, 1907716.

    Article  CAS  Google Scholar 

  7. Liao, L. W.; Zhuang, S. L.; Wang, P.; Xu, Y. N.; Yan, N.; Dong, H. W.; Wang, C. M.; Zhao, Y.; Xia, N.; Li, J. et al. Quasi-dual-packed-kerneled Au49(2,4-DMBT)27 nanoclusters and the influence of kernel packing on the electrochemical gap. Angew. Chem., Int. Ed. 2017, 56, 12644–12648.

    Article  CAS  Google Scholar 

  8. Chen, D. Y.; Luo, Z. T.; Li, N. J.; Lee, J. Y.; Xie, J. P.; Lu, J. M. Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv. Funct. Mater. 2013, 23, 4324–4331.

    Article  CAS  Google Scholar 

  9. Jiang, X. Y.; Du, B. J.; Zheng, J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 2019, 14, 874–882.

    Article  CAS  Google Scholar 

  10. Lei, Y. F.; Tang, L. X.; Xie, Y. Z. Y.; Xianyu, Y. L.; Zhang, L. M.; Wang, P.; Hamada, Y.; Jiang, K.; Zheng, W. F.; Jiang, X. Y. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 2017, 8, 15130.

    Article  Google Scholar 

  11. Sun, Y. Q.; Wang, D. D.; Zhao, Y. Q.; Zhao, T. X.; Sun, H. C.; Li, X. W.; Wang, C. X.; Yang, B.; Lin, Q. Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging. Nano Res. 2018, 11, 2392–2404.

    Article  CAS  Google Scholar 

  12. Li, Q. Z.; Pan, Y. T.; Chen, T. K.; Du, Y. X.; Ge, H. H.; Zhang, B. C.; Xie, J. P.; Yu, H. Z.; Zhu, M. Z. Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale 2018, 10, 10166–10172.

    Article  CAS  Google Scholar 

  13. Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Le Guével, X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016, 10, 2591–2599.

    Article  CAS  Google Scholar 

  14. Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646.

    Article  CAS  Google Scholar 

  15. Wang, P. F.; Rahman, M. A.; Zhao, Z. X.; Weiss, K.; Zhang, C.; Chen, Z. J.; Hurwitz, S. J.; Chen, Z. G.; Shin, D. M.; Ke, Y. G. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J. Am. Chem. Soc. 2018, 140, 2478–2484.

    Article  CAS  Google Scholar 

  16. Qi, G B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444.

    Article  CAS  Google Scholar 

  17. Sato, K.; Hendricks, M. P.; Palmer, L. C.; Stupp, S. I. Peptide supramolecular materials for therapeutics. Chem. Soc. Rev. 2018, 47, 7539–7551.

    Article  CAS  Google Scholar 

  18. Li, M.; Ehlers, M.; Schlesiger, S.; Zellermann, E.; Knauer, S. K.; Schmuck, C. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew. Chem., Int. Ed. 2016, 55, 598–601.

    Article  CAS  Google Scholar 

  19. Zhang, W. S.; Lin, D. M.; Wang, H. X.; Li, J. F.; Nienhaus, G. U.; Su, Z. Q.; Wei, G.; Shang, L. Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging. Bioconjugate Chem. 2017, 28, 2224–2229.

    Article  CAS  Google Scholar 

  20. Fan, Z.; Sun, L. M.; Huang, Y. J.; Wang, Y. Z.; Zhang, M. J. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388–394.

    Article  CAS  Google Scholar 

  21. Wang, Y.; Lin, Y. X.; Qiao, Z. Y.; An, H. W.; Qiao, S. L.; Wang, L.; Rajapaksha, R. P. Y. J.; Wang, H. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv. Mater. 2015, 27, 2627–2634.

    Article  CAS  Google Scholar 

  22. Fan, Z.; Chang, Y.; Cui, C. C.; Sun, L. M.; Wang, D. H.; Pan, Z.; Zhang, M. J. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat. Commun. 2018, 9, 2605.

    Article  CAS  Google Scholar 

  23. Pugliese, R.; Marchini, A.; Saracino, G. A. A.; Zuckermann, R. N.; Gelain, F. Cross-linked self-assembling peptide scaffolds. Nano Res. 2018, 11, 586–602.

    Article  CAS  Google Scholar 

  24. Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning, X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981.

    Article  CAS  Google Scholar 

  25. Liu, J. B.; Duchesne, P. N.; Yu, M. X.; Jiang, X. Y.; Ning, X. H.; Vinluan III, R. D.; Zhang, P.; Zheng, J. Luminescent gold nanoparticles with size-independent emission. Angew. Chem., Int. Ed. 2016, 55, 8894–8898.

    Article  CAS  Google Scholar 

  26. Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993, 366, 324–327.

    Article  CAS  Google Scholar 

  27. Lamas, A.; Guerra, A.; Amorín, M.; Granja, J. R. New self-assembling peptide nanotubes of large diameter using δ-amino acids. Chem. Sci. 2018, 9, 8228–8233.

    Article  CAS  Google Scholar 

  28. Zhou, T. Y.; Zhu, J. Y.; Gong, L. S.; Nong, L. T.; Liu, J. B. Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 2019, 141, 2852–2856.

    Article  CAS  Google Scholar 

  29. Ling, D. S.; Hackett, M. J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457–477.

    Article  CAS  Google Scholar 

  30. Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.

    Article  CAS  Google Scholar 

  31. Lu, J. X.; Wang, J.; Ling, D. S. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small 2018, 14, 1702037.

    Article  CAS  Google Scholar 

  32. Wu, X. A.; Choi, C. H. J.; Zhang, C.; Hao, L. L.; Mirkin, C. A. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7726–7733.

    Article  CAS  Google Scholar 

  33. Vindigni, G.; Raniolo, S.; Ottaviani, A.; Falconi, M.; Franch, O.; Knudsen, B. R.; Desideri, A.; Biocca, S. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 2016, 10, 5971–5979.

    Article  CAS  Google Scholar 

  34. Zinchuk, V.; Zinchuk, O.; Okada, T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: Pushing pixels to explore biological phenomena. Acta Histochem. Cytochem. 2007, 40, 101–111.

    Article  CAS  Google Scholar 

  35. Zhu, J. Y.; He, K.; Dai, Z. Y.; Gong, L. S.; Zhou, T. Y.; Liang, H. R.; Liu, J. B. Self-assembly of luminescent gold nanoparticles with sensitive pH-stimulated structure transformation and emission response toward lysosome escape and intracellular imaging. Anal. Chem. 2019, 91, 8237–8243.

    Article  CAS  Google Scholar 

  36. Iversen, T. G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185.

    Article  CAS  Google Scholar 

  37. Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. J. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small 2012, 8, 2577–2584.

    Article  CAS  Google Scholar 

  38. Akishiba, M.; Takeuchi, T.; Kawaguchi, Y.; Sakamoto, K.; Yu, H. H.; Nakase, I.; Takatani-Nakase, T.; Madani, F.; Gräslund, A.; Futaki, S. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 2017, 9, 751–761.

    Article  CAS  Google Scholar 

  39. Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 11613–11618.

    Article  CAS  Google Scholar 

  40. Jana, P.; Samanta, K.; Bäcker, S.; Zellermann, E.; Knauer, S.; Schmuck, C. Efficient gene transfection through inhibition of β-sheet (amyloid fiber) formation of a short amphiphilic peptide by gold nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 8083–8088.

    Article  CAS  Google Scholar 

  41. Liu, Y. H.; Zhang, X. N.; Han, C.; Wan, G. H.; Huang, X. X.; Ivan, C.; Jiang, D. H.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Rao, P. H. et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 2015, 520, 697–701.

    Article  CAS  Google Scholar 

  42. Bykov, V. J. N.; Eriksson, S. E.; Bianchi, J.; Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 2017, 18, 89–102.

    Article  CAS  Google Scholar 

  43. Capasso Palmiero, U.; Kaczmarek, J. C.; Fenton, O. S.; Anderson, D. G. Poly(β-amino ester)-co-poly(caprolactone) terpolymers as nonviral vectors for mRNA delivery in vitro and in vivo. Adv. Healthcare Mater. 2018, 7, 1800249.

    Article  CAS  Google Scholar 

  44. Takagi, M.; Absalon, M. J.; McLure, K. G.; Kastan, M. B. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005, 123, 49–63.

    Article  CAS  Google Scholar 

  45. Kubbutat, M. H. G.; Jones, S. N.; Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 1997, 387, 299–303.

    Article  CAS  Google Scholar 

  46. Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21573078 and 22022403), Guangdong Natural Science Funds for Distinguished Young Scholars (No. 2016A030306024), Guangzhou Science and Technology Project (No. 201904010055), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Liu.

Electronic Supplementary Material

12274_2020_3153_MOESM1_ESM.pdf

In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Zhu, J., Gong, L. et al. In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion. Nano Res. 14, 1087–1094 (2021). https://doi.org/10.1007/s12274-020-3153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3153-6

Keywords

Navigation