Skip to main content
Log in

Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A three-dimensional flower-like NiCo2S4 formed by two-dimensional nanosheets is synthesized by a facile hydrothermal method and utilized as the anode for sodium-ion batteries. Studies have shown that materials can achieve the best performance under the ether-based electrolyte system with voltage ranging from 0.3 to 3 V, which could effectively avoid the dissolution of polysulfides and over-discharge of the material. Here, sodium storage mechanism and charge compensation behaviors of this ternary metal sulfide are comprehensively investigated by ex situ X-ray diffraction. Moreover, ex situ Raman spectra, ex situ X-ray photoelectron spectroscopy and transmission electron microscopy measurements are used to related tests for the first time. Additionally, quantitative kinetic analysis unravels that sodium storage partially depends on the pseudocapacitance mechanism, resulting in good specific capacity and excellent rate performance. The initial discharge capacity is as high as 748 mAh·g−1 at a current density of 0.1 A·g−1 with the initial coulomb efficiency of 94%, and the capacity can still maintain at 580 mAh·g−1 with the Coulomb efficiency close to 100% after following 50 cycles. Moreover, by the long cycle test at a high current density of 2 A·g−1, the capacity can still reach at 376 mAh·g−1 after over 500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

    Google Scholar 

  2. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithiumion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  3. Ortiz-Vitoriano, N.; Drewett, N. E.; Gonzalo, E.; Rojo, T. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 2017, 10, 1051–1074.

    CAS  Google Scholar 

  4. You, Y.; Manthiram, A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1701785.

    Google Scholar 

  5. Jache, B.; Adelhelm, P. Use of Graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

    CAS  Google Scholar 

  6. Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

    Google Scholar 

  7. Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66–95.

    Google Scholar 

  8. Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 2017, 11, 12658–12667.

    CAS  Google Scholar 

  9. Zhao, F.; Gong, Q.; Traynor, B.; Zhang, D.; Li, J.; Ye, H.; Chen, F.; Han, N.; Wang, Y.; Sun, X.; et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162–3170.

    CAS  Google Scholar 

  10. Li, H.; Wang, Y. H.; Jiang, J. L.; Zhang, Y. Y.; Peng, Y. Y.; Zhao, J. B. CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim. Acta 2017, 247, 851–859.

    CAS  Google Scholar 

  11. Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 2011, 158, A1067–A1070.

    CAS  Google Scholar 

  12. Rui, X. H.; Tan, H. T.; Yan, Q. Y. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924.

    CAS  Google Scholar 

  13. Bhattacharjya, D.; Sinhamahapatra, A.; Ko, J. J.; Yu, J. S. High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commun. 2015, 51, 13350–13353.

    CAS  Google Scholar 

  14. Wang, J. G.; Jin, D. D.; Zhou, R.; Shen, C.; Xie, K. Y.; Wei, B. Q. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 2016, 306, 100–106.

    CAS  Google Scholar 

  15. Zou, R. J.; Zhang, Z. Y.; Yuen, M. F.; Sun, M. L.; Hu, J. Q.; Lee, C. S.; Zhang, W. J. Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater. 2015, 7, e195.

    CAS  Google Scholar 

  16. Pu, J.; Cui, F. L.; Chu, S. B.; Wang, T. T.; Sheng, E. H.; Wang, Z. H. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustainable Chem. Eng. 2014, 2, 809–815.

    CAS  Google Scholar 

  17. Chen, H. C.; Jiang, J. J.; Zhang, L.; Wan, H. Z.; Qi, T.; Xia, D. D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013, 5, 8879–8883.

    CAS  Google Scholar 

  18. Xiao, J. W.; Wan, L.; Yang, S. H.; Xiao, F.; Wang, S. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2014, 14, 831–838.

    CAS  Google Scholar 

  19. Shadike, Z.; Cao, M. H.; Ding, F.; Sang, L.; Fu, Z. W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. 2015, 51, 10486–10489.

    CAS  Google Scholar 

  20. Zhu, Y. J.; Suo, L.; Gao, T.; Fan, X. L.; Han, F. D.; Wang, C. S. Ether-based electrolyte enabled Na/FeS2 rechargeable batteries. Electrochem. Commun. 2015, 54, 18–22.

    CAS  Google Scholar 

  21. Yu, D. X.; Pang, Q.; Gao, Y.; Wei, Y. J.; Wang, C. Z.; Chen, G.; Du, F. Hierarchical flower-like VS2 nanosheets-A high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Mater. 2018, 11, 1–7.

    Google Scholar 

  22. Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y. M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281–289.

    CAS  Google Scholar 

  23. Jannesari, H.; Emami, M. D.; Ziegler, C. Effect of electrolyte transport properties and variations in the morphological parameters on the variation of side reaction rate across the anode electrode and the aging of lithium ion batteries. J. Power Sources 2011, 196, 9654–9664.

    CAS  Google Scholar 

  24. Yuan, D. X.; Huang, G.; Yin, D. M.; Wang, X. X.; Wang, C. L.; Wang, L. M. Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 2017, 9, 18178–18186.

    CAS  Google Scholar 

  25. Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.

    Google Scholar 

  26. Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.

    Google Scholar 

  27. Lu, C.; Li, Z. Z.; Yu, L. H.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614–4626.

    CAS  Google Scholar 

  28. Zhu, C. Y.; Xu, F.; Min, H. H.; Huang, Y.; Xia, W. W.; Wang, Y. T.; Xu, Q. Y.; Gao, P.; Sun, L. T. Identifying the conversion mechanism of NiCo2O4 during sodiation-desodiation cycling by in situ TEM. Adv. Funct. Mater. 2017, 27, 1606163.

    Google Scholar 

  29. Zhang, Z. W.; Li, Z. Q.; Yin, L. W. Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as a high performance anode material for sodium and lithium ion batteries. New J. Chem. 2018, 42, 1467–1476.

    CAS  Google Scholar 

  30. Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y. et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051–3058.

    CAS  Google Scholar 

  31. Peng, S. J.; Han, X. P.; Li, L. L.; Zhu, Z. Q.; Cheng, F. Y.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359–1368.

    CAS  Google Scholar 

  32. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS Quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

    Google Scholar 

  33. Luo, P.; Zhang, H. J.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C. H.; Hu, N.; Wang, Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 2017, 9, 2500–2508.

    CAS  Google Scholar 

  34. Li, H. B.; Chai, L. L.; Wang, X. Q.; Wu, X. Y.; Xi, G. C.; Liu, Y. K.; Qian, Y. T. Hydrothermal growth and morphology modification of ß-NiS three-dimensional flowerlike architectures. Cryst. Growth Des. 2007, 7, 1918–1922.

    CAS  Google Scholar 

  35. Bishop, D. W.; Thomas, P. S.; Ray, A. S. Raman spectra of nickel (II) sulfide. Mater. Res. Bull. 1998, 33, 1303–1306.

    CAS  Google Scholar 

  36. Zhang, Y. F.; Zuo, L. Z.; Zhang, L. S.; Yan, J. J.; Lu, H. Y.; Fan, W.; Liu, T. X. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016, 9, 2747–2759.

    CAS  Google Scholar 

  37. Zhang, D.; Sun, W. P.; Zhang, Y.; Dou, Y. H.; Jiang, Y. Z.; Dou, S. X. Engineering hierarchical hollow nickel sulfide spheres for highperformance sodium storage. Adv. Funct. Mater. 2016, 26, 7479–7485.

    CAS  Google Scholar 

  38. Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G.; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H. et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259–2267.

    CAS  Google Scholar 

  39. Dai, K.; Li, D. P.; Lu, L. H.; Liu, Q.; Lv, J. L.; Zhu, G. P. Facile synthesis of a reduced graphene oxide/cobalt sulfide hybrid and its electrochemical capacitance performance. RSC Adv. 2014, 4, 29216–29222.

    CAS  Google Scholar 

  40. Mo, Y. D.; Ru, Q.; Chen, J. F.; Song, X.; Guo, L. Y.; Hu, S. J.; Peng, S. M. Three-dimensional NiCo2O4 nanowire arrays: Preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance. J. Mater. Chem. A 2015, 3, 19765–19773.

    CAS  Google Scholar 

  41. Jin, R. C.; Liu, G.; Liu, C. P.; Sun, L. High electrochemical performances of hierarchical Hydrangea macrophylla like NiCo2O4 and NiCo2S4 as anode materials for Li-ion batteries. Mater. Res. Bull. 2016, 80, 309–315.

    CAS  Google Scholar 

  42. Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876–15887.

    CAS  Google Scholar 

  43. Cui, J.; Yao, S. S.; Kim, J. K. Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater. 2017, 7, 64–114.

    Google Scholar 

  44. Wang, M. R.; Lai, Y. Q.; Fang, J.; Qin, F. R.; Zhang, Z. A.; Li, J.; Zhang, K. Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries. Catal. Sci. Technol. 2016, 6, 434–437.

    CAS  Google Scholar 

  45. Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Liu, S. J.; Mai, L. Q. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 2017, 35, 396–404.

    CAS  Google Scholar 

  46. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–51.

    CAS  Google Scholar 

  47. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    CAS  Google Scholar 

  48. Cook, J. B.; Kim, H. S.; Lin, T. C.; Lai, C. H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 2017, 7, 1601283.

    Google Scholar 

  49. Cook, J. B.; Kim, H. S.; Yan, Y.; Ko, J. S.; Robbennolt, S.; Dunn, B.; Tolbert, S. H. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 2016, 6, 1501937.

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from “973” project (No. 2015CB251103), the National Natural Science Foundation of China (No. 21771086), S&T Development Program of Jilin Province (Nos. 20160101320JC and 20180101293JC), and Jilin Provincial Department of Education “13th Five-Year” scientific research project (No. JJKH20180116KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijuan Yue or Dong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Zhao, X., Wang, X. et al. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 13, 3041–3047 (2020). https://doi.org/10.1007/s12274-020-2969-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2969-4

Keywords

Navigation