Skip to main content
Log in

Highly effective H2/D2 separation in a stable Cu-based metal-organic framework

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A three-dimensional copper metal—organic framework with the rare chabazite (CHA) topology namely FJI-Y11 has been constructed with flexibly carboxylic ligand 5,5′-[(1,4-phenylenebis(methylene))bis(oxy)]diisophthalic acid (H4L). FJI-Y11 exhibits high water stability with the pH range from 2 to 12 at temperature as high as 373 K. Importantly, FJI-Y11 also shows high efficiency of hydrogen isotope separation using dynamic column breakthrough experiments under atmospheric pressure at 77 K. Attributed to its excellent structural stability, FJI-Y11 possesses good regenerated performance and maintains high separation efficiency after three cycles of breakthrough experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beenakker, J. J. M.; Borman, V. D.; Krylov, S. Y. Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving. Chem. Phys. Lett.1995, 232, 379–382.

    CAS  Google Scholar 

  2. Basmadjian, D. Adsorption equilibria of hydrogen, deuterium, and their mixtures. Part I. Can. J. Chem.1960, 38, 141–148.

    CAS  Google Scholar 

  3. Johnston, H. L.; Long, E. A. Heat capacity curves of the simpler gases. vi. Rotational heat capacity curves of molecular deuterium and of deuterium hydride. The equilibrium between the ortho and para forms of deuterium. Free energy, total energy, entropy, heat capacity and dissociation of H2H2 and of H1H2, to 3000 °K. J. Chem. Phys.1934, 2, 389–395.

    CAS  Google Scholar 

  4. Yaris, R.; Sams, J. R. Jr. Quantum treatment of the physical adsorption of isotopic species. J. Chem. Phys.1962, 37, 571–576.

    CAS  Google Scholar 

  5. Povinec, P. P.; Bokuniewicz, H.; Burnett, W. C.; Cable, J.; Charette, M.; Comanducci, J. F.; Kontar, E. A.; Moore, W. S.; Oberdorfer, J. A.; de Oliveira, J. et al. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: Results of the IAEA-UNESCO SGD project. J. Environ. Radioact.2008, 99, 1596–1610.

    CAS  Google Scholar 

  6. Keppler, F.; Hamilton, J. T. G.; McRoberts, W. C.; Vigano, I.; Braß, M.; Röckmann, T. Methoxyl groups of plant pectin as a precursor of atmospheric methane: Evidence from deuterium labelling studies. New Phytol.2008, 178, 808–814.

    CAS  Google Scholar 

  7. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science2000, 288, 1604–1607.

    CAS  Google Scholar 

  8. Büldt, G.; Gally, H. U.; Seelig, A.; Seelig, J.; Zaccai, G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature1978, 271, 182–184.

    Google Scholar 

  9. Shi, C. W.; Fricke, P.; Lin, L.; Chevelkov, V.; Wegstroth, M.; Giller, K.; Becker, S.; Thanbichler, M.; Lange, A. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv.2015, 1, e1501087.

    Google Scholar 

  10. Tanaka, H.; Noguchi, D.; Yuzawa, A.; Kodaira, T.; Kanoh, H.; Kaneko, K. Quantum effects on hydrogen isotopes adsorption in nanopores. J. Low Temp. Phys.2009, 157, 352–373.

    CAS  Google Scholar 

  11. Salazar, J. M.; Lectez, S.; Gauvin, C.; Macaud, M.; Bellat, J. P.; Weber, G.; Bezverkhyy, I.; Simon, J. M. Adsorption of hydrogen isotopes in the zeolite NaX: Experiments and simulations. Int. J. Hydrogen Energy2017, 42, 13099–13110.

    CAS  Google Scholar 

  12. Physick, A. J. W.; Wales, D. J.; Owens, S. H. R.; Shang, J.; Webley, P. A.; Mays, T. J.; Ting, V. P. Novel low energy hydrogen-deuterium isotope breakthrough separation using a trapdoor zeolite. Chem. Eng. J.2016, 288, 161–168.

    CAS  Google Scholar 

  13. Zhao, X. B.; Xiao, B.; Fletcher, A. J.; Thomas, K. M. Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B2005, 109, 8880–8888.

    CAS  Google Scholar 

  14. Kumar, A. V. A.; Bhatia, S. K. Quantum effect induced reverse kinetic molecular sieving in microporous materials. Phys. Rev. Lett.2005, 95, 245901.

    Google Scholar 

  15. Tanaka, H.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J. Am. Chem. Soc.2005, 127, 7511–7516.

    CAS  Google Scholar 

  16. Stéphanie-Victoire, F.; Goulay, A. M.; de Lara, E. C. Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. 1. Isotherms of H2, HD, and D2 in NaA by thermomicrogravimetry. Langmuir1998, 14, 7255–7259.

    Google Scholar 

  17. Cendagorta, J. R.; Powers, A.; Hele, T. J. H.; Marsalek, O.; Bačić, Z.; Tuckerman, M. E. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates. Phys. Chem. Chem. Phys.2016, 18, 32169–32177.

    CAS  Google Scholar 

  18. Chu, X. Z.; Cheng, Z. P.; Xiang, X. X.; Xu, J. M.; Zhao, Y. J.; Zhang, W. G.; Lv, J. S.; Zhou, Y. P.; Zhou, L.; Moon, D. K. et al. Separation dynamics of hydrogen isotope gas in mesoporous and microporous adsorbent beds at 77 K: SBA-15 and zeolites 5A, Y, 10X. Int. J. Hydrogen Energy2014, 39, 4437–4446.

    CAS  Google Scholar 

  19. Oh, H.; Kalidindi, S. B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R. A.; Hirscher, M. A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. Angew. Chem., Int. Ed.2013, 52, 13219–13222.

    CAS  Google Scholar 

  20. Krkljus, I.; Steriotis, T.; Charalambopoulou, G.; Gotzias, A.; Hirscher, M. H2/D2 adsorption and desorption studies on carbon molecular sieves with different pore structures. Carbon2013, 57, 239–247.

    CAS  Google Scholar 

  21. Cai, J. J.; Xing, Y. L.; Zhao, X. B. Quantum sieving: Feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials. RSC Adv.2012, 2, 8579–8586.

    CAS  Google Scholar 

  22. Nguyen, T. X.; Jobic, H.; Bhatia, S. K. Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material. Phys. Rev. Lett.2010, 105, 085901.

    CAS  Google Scholar 

  23. Kotoh, K.; Takashima, S.; Sakamoto, T.; Tsuge, T. Multi-component behaviors of hydrogen isotopes adsorbed on synthetic zeolites 4A and 5A at 77.4 K and 87.3 K. Fusion Eng. Des.2010, 85, 1928–1934.

    CAS  Google Scholar 

  24. Garberoglio, G. Quantum sieving in organic frameworks. Chem. Phys. Lett.2009, 467, 270–275.

    CAS  Google Scholar 

  25. Panella, B.; Hirscher, M.; Ludescher, B. Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials. Micropor. Mesopor. Mater.2007, 103, 230–234.

    CAS  Google Scholar 

  26. Zhao, X. B.; Villar-Rodil, S.; Fletcher, A. J.; Thomas, K. M. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J. Phys. Chem. B2006, 110, 9947–9955.

    CAS  Google Scholar 

  27. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev.2012, 112, 673–674.

    CAS  Google Scholar 

  28. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev.2012, 112, 782–835.

    CAS  Google Scholar 

  29. Kapelewski, M. T.; Runcevski, T.; Tarver, J. D.; Jiang, H. Z. H.; Hurst, K. E.; Parilla, P. A.; Ayala, A.; Gennett, T.; FitzGerald, S. A.; Brown, C. M. et al. Record high hydrogen storage capacity in the metal-organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater.2018, 30, 8179–8189.

    CAS  Google Scholar 

  30. Noguchi, D.; Tanaka, H.; Kondo, A.; Kajiro, H.; Noguchi, H.; Ohba, T.; Kanoh, H.; Kaneko, K. Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2. J. Am. Chem. Soc.2008, 130, 6367–6372.

    CAS  Google Scholar 

  31. Teufel, J.; Oh, H.; Hirscher, M.; Wahiduzzaman, M.; Zhechkov, L.; Kuc, A.; Heine, T.; Denysenko, D.; Volkmer, D. MFU-4—A metal-organic framework for highly effective H2/D2 separation. Adv. Mater.2013, 25, 635–639.

    CAS  Google Scholar 

  32. Paschke, B.; Denysenko, D.; Bredenkötter, B.; Sastre, G.; Wixforth, A.; Volkmer, D. Dynamic studies on kinetic H2/D2 quantum sieving in a narrow pore metal-organic framework grown on a sensor chip. Chem.—Eur. J.2019, 25, 10803–10807.

    CAS  Google Scholar 

  33. Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S. M.; Kim, H. H.; Le Tacon, M.; Daemen, L. L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A. J. et al. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. Nat. Commun.2017, 8, 14496.

    CAS  Google Scholar 

  34. Chen, B. L.; Zhao, X. B.; Putkham, A.; Hong, K. L.; Lobkovsky, E. B.; Hurtado, E. J.; Fletcher, A. J.; Thomas, K. M. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. J. Am. Chem. Soc.2008, 130, 6411–6423.

    CAS  Google Scholar 

  35. Kim, J. Y.; Balderas-Xicohténcatl, R.; Zhang, L. D.; Kang, S. G.; Hirscher, M.; Oh, H.; Moon, H. R. Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc.2017, 139, 15135–15141.

    CAS  Google Scholar 

  36. FitzGerald, S. A.; Pierce, C. J.; Rowsell, J. L. C.; Bloch, E. D.; Mason, J. A. Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy. J. Am. Chem. Soc.2013, 135, 9458–9464.

    CAS  Google Scholar 

  37. FitzGerald, S. A.; Burkholder, B.; Friedman, M.; Hopkins, J. B.; Pierce, C. J.; Schloss, J. M.; Thompson, B.; Rowsell, J. L. C. Metal-specific interactions of H2 adsorbed within isostructural metal-organic frameworks. J. Am. Chem. Soc.2011, 133, 20310–20318.

    CAS  Google Scholar 

  38. FitzGerald, S. A.; Hopkins, J.; Burkholder, B.; Friedman, M.; Rowsell, J. L. C. Quantum dynamics of adsorbed normal- and para-H2, HD, and D2 in the microporous framework MOF-74 analyzed using infrared spectroscopy. Phys. Rev. B2010, 81, 104305.

    Google Scholar 

  39. Oh, H.; Hirscher, M. Quantum sieving for separation of hydrogen isotopes using MOFs. Eur. J. Inorg. Chem.2016, 2016, 4278–4289.

    CAS  Google Scholar 

  40. Oh, H.; Park, K. S.; Kalidindi, S. B.; Fischer, R. A.; Hirscher, M. Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: An experimental study on the correlation between effective quantum sieving and pore size. J. Mater. Chem. A2013, 1, 3244–3248.

    CAS  Google Scholar 

  41. Liu, M.; Zhang, L. D.; Little, M. A.; Kapil, V.; Ceriotti, M.; Yang, S. Y.; Ding, L. F.; Holden, D. L.; Balderas-Xicohténcatl, R.; He, D. L. et al. Barely porous organic cages for hydrogen isotope separation. Science2019, 366, 613–620.

    CAS  Google Scholar 

  42. Oh, H.; Savchenko, I.; Mavrandonakis, A.; Heine, T.; Hirscher, M. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: Direct measurement and theoretical analysis. ACS Nano2014, 8, 761–770.

    CAS  Google Scholar 

  43. Wang, H.; Dong, X. L.; Lin, J. Z.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q. B.; Tan, K.; Wang, Q. N. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun.2018, 9, 1745.

    Google Scholar 

  44. Hu, Z. G.; Peng, Y. W.; Kang, Z. X.; Qian, Y. H.; Zhao, D. A Modulated Hydrothermal (MHT) approach for the facile synthesis of UiO-66-Type MOFs. Inorg. Chem.2015, 54, 4862–4868.

    CAS  Google Scholar 

  45. Cooper, L.; Guillou, N.; Martineau, C.; Elkaim, E.; Taulelle, F.; Serre, C.; Devic, T. ZrIV coordination polymers based on a naturally occurring phenolic derivative. Eur. J. Inorg. Chem.2014, 2014, 6281–6289.

    CAS  Google Scholar 

  46. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science2005, 309, 2040–2042.

    Google Scholar 

  47. Nguyen, N. T. T.; Furukawa, H.; Gándara, F.; Nguyen, H. T.; Cordova, K. E.; Yaghi, O. M. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem., Int. Ed.2014, 53, 10645–10648.

    CAS  Google Scholar 

  48. Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite a imidazolate frameworks. Nat. Mater.2007, 6, 501–506.

    CAS  Google Scholar 

  49. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA2006, 103, 10186–10191.

    CAS  Google Scholar 

  50. Pan, Y. J.; Ford, W. T. Dendrimers with alternating amine and ether generations. J. Org. Chem.1999, 64, 8588–8593.

    CAS  Google Scholar 

  51. Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simulat.2016, 42, 81–101.

    CAS  Google Scholar 

  52. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem.1990, 94, 8897–8909.

    CAS  Google Scholar 

  53. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc.1992, 114, 10024–10035.

    CAS  Google Scholar 

  54. Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater.2012, 149, 134–141.

    CAS  Google Scholar 

  55. Martin, R. L.; Smit, B.; Haranczyk, M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Model.2012, 52, 308–318.

    CAS  Google Scholar 

  56. Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem.2015, 71, 9–18.

    CAS  Google Scholar 

  57. McHugh, L. N.; McPherson, M. J.; McCormick, L. J.; Morris, S. A.; Wheatley, P. S.; Teat, S. J.; McKay, D.; Dawson, D. M.; Sansome, C. E. F.; Ashbrook, S. E. et al. Hydrolytic stability in hemilabile metal-organic frameworks. Nat. Chem.2018, 10, 1096–1102.

    CAS  Google Scholar 

  58. Gygi, D.; Bloch, E. D.; Mason, J. A.; Hudson, M. R.; Gonzalez, M. I.; Siegelman, R. L.; Darwish, T. A.; Queen, W. L.; Brown, C. M.; Long, J. R. Hydrogen storage in the expanded pore metal-organic frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater.2016, 28, 1128–1138.

    CAS  Google Scholar 

  59. Kim, J. Y.; Zhang, L. D.; Balderas-Xicohténcatl, R.; Park, J.; Hirscher, M.; Moon, H. R.; Oh, H. Selective hydrogen isotope separation via breathing transition in MIL-53(Al). J. Am. Chem. Soc.2017, 139, 17743–17746.

    CAS  Google Scholar 

  60. Zhao, Q.; Yuan, W.; Liang, J. M.; Li, J. P. Synthesis and hydrogen storage studies of metal-organic framework UiO-66. Int. J. Hydrogen Energy2013, 38, 13104–13109.

    CAS  Google Scholar 

  61. Ren, J. W.; Langmi, H. W.; North, B. C.; Mathe, M.; Bessarabov, D. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. Int. J. Hydrogen Energy2014, 39, 890–895.

    CAS  Google Scholar 

  62. Chavan, S.; Vitillo, J. G.; Gianolio, D.; Zavorotynska, O.; Civalleri, B.; Jakobsen, S.; Nilsen, M. H.; Valenzano, L.; Lamberti, C.; Lillerud, K. P. et al. H2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys. Chem. Chem. Phys.2012, 14, 1614–1626.

    CAS  Google Scholar 

  63. Zhou, M.; Wang, Q.; Zhang, L.; Liu, Y. C.; Kang, Y. Adsorption sites of hydrogen in zeolitic imidazolate frameworks. J. Phys. Chem. B2009, 113, 11049–11053.

    CAS  Google Scholar 

  64. Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science1999, 283, 1148–1150.

    CAS  Google Scholar 

  65. Krkljus, I.; Hirscher, M. Characterization of hydrogen/deuterium adsorption sites in nanoporous Cu-BTC by low-temperature thermal-desorption mass spectroscopy. Micropor. Mesopor. Mater.2011, 142, 725–729.

    CAS  Google Scholar 

  66. Peterson, V. K.; Brown, C. M.; Liu, Y.; Kepert, C. J. Structural study of D2 within the trimodal pore system of a metal organic framework. J. Phys. Chem. C2011, 115, 8851–8857.

    CAS  Google Scholar 

  67. Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater.2006, 18, 1337–1346.

    CAS  Google Scholar 

  68. Lee, J.; Li, J.; Jagiello, J. Gas sorption properties of microporous metal organic frameworks. J. Solid State Chem.2005, 178, 2527–2532.

    CAS  Google Scholar 

  69. Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc.2006, 128, 1304–1315.

    CAS  Google Scholar 

  70. Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc.2006, 128, 3494–3495.

    CAS  Google Scholar 

  71. Xiao, B.; Wheatley, P. S.; Zhao, X. B.; Fletcher, A. J.; Fox, S.; Rossi, A. G.; Megson, I. L.; Bordiga, S.; Regli, L.; Thomas, K. M. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J. Am. Chem. Soc.2007, 129, 1203–1209.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Strategic Priority Research Program of CAS (No. XDB20000000), the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH019), and the Natural Nature Science Foundation of China (Nos. 21771177, 51603206 and 21203117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang He or Daqiang Yuan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Y., He, X., Jiang, J. et al. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Res. 14, 518–525 (2021). https://doi.org/10.1007/s12274-019-2571-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2571-9

Keywords

Navigation