Skip to main content
Log in

Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 29 May 2020

This article has been updated

Abstract

High-performance white light-emitting diodes (WLEDs) hold great potential for the next-generation backlight display applications. However, achieving highly efficient and stable WLEDs with wide-color-gamut has remained a formidable goal. Reported here is the first example of pure red narrow bandwidth emission triangular CQDs (PR-NBE-T-CQDs) with photoluminescence peaking at 610 nm. The PR-NBE-T-CQDs synthesized from resorcinol show high quantum yield (QY) of 72% with small full width at half maximum of 33 nm. By simply controlling the reaction time, pure green (PG-) NBE-T-CQDs with high QY of 75% were also obtained. Highly efficient and stable WLEDs with wide-color-gamut based on PR- and PG-NBE-T-CQDs was achieved. This WLED showed a remarkable wide-color gamut of 110% NTSC and high power efficiency of 86.5 lumens per Watt. Furthermore, such WLEDs demonstrate outstanding stability. This work will set the stage for developing highly efficient, low cost and environment-friendly WLEDs based on CQDs for the next-generation wide-color gamut backlight displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 May 2020

    In the version of this article originally published, Figs. 2(d) and 3(a), and Figs. S3 and S6 in the Electronic Supplementary Material (ESM) were incorrect. The corrected images are shown below.

References

  1. Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088–10094.

    Article  CAS  Google Scholar 

  2. Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.

    Article  CAS  Google Scholar 

  3. Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

    Google Scholar 

  4. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano2015, 9, 4533–4542.

    Article  CAS  Google Scholar 

  5. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics. 2013, 7, 13–23.

    Article  CAS  Google Scholar 

  6. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature2002, 420, 800–803.

    Article  CAS  Google Scholar 

  7. Wang, Z. B.; Luo, Z.; Zhao, C. Y.; Guo, Q.; Wang, Y. P.; Wang, F. Z.; Bian, X. M.; Alsaedi, A.; Hayat, T.; Tan, Z. A. Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer. J. Phys. Chem. C2017, 121, 28132–28138.

    Article  CAS  Google Scholar 

  8. Wang, Z. B.; Wang, F. Z.; Sun, W. D.; Ni, R. H.; Hu, S. Q.; Liu, J. Y.; Zhang, B.; Alsaed, A.; Hayat, T.; Tan, Z. A. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1804187.

    Article  Google Scholar 

  9. Wang, Z. B.; Cheng, T.; Wang, F. Z.; Dai, S. Y.; Tan, Z. A. Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures. Small2016, 12, 4412–4420.

    Article  CAS  Google Scholar 

  10. Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small2017, 13, 1603996.

    Article  Google Scholar 

  11. Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

    Article  CAS  Google Scholar 

  12. Bhattacharya, P.; Mi, Z. T. Quantum-dot optoelectronic devices. Proc. IEEE. 2007, 95, 1723–1740.

    Article  CAS  Google Scholar 

  13. Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S. M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 2012, 7, 480.

    Article  Google Scholar 

  14. Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

    Article  Google Scholar 

  15. Yuan, F. L.; Li, Y. C.; Li, X. H.; Zhu, J.; Fan, L. Z.; Zhou, S. X.; Zhang, Y. R.; Zhou, J. B. Nitrogen-rich D-p-a structural carbon quantum dots with a bright two-photon fluorescence for deep-tissue imaging. ACS Appl. Bio Mater. 2018, 1, 853–858.

    Article  CAS  Google Scholar 

  16. Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231–7235.

    Article  CAS  Google Scholar 

  17. Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today2016, 11, 565–586.

    Article  CAS  Google Scholar 

  18. Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale2015, 7, 11727–11733.

    Article  CAS  Google Scholar 

  19. Yuan, F. L.; Xi, Z. F.; Shi, X. Y.; Li, Y. C.; Li, X. H.; Wang, Z. N.; Fan, L. Z.; Yang, S. H. Ultrastable and low-threshold random lasing from narrow-bandwidth-emission triangular carbon quantum dots. Adv. Opt. Mater. 2019, 7, 1801202.

    Google Scholar 

  20. Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

    Google Scholar 

  21. Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

    Article  Google Scholar 

  22. Chen, H. W.; He, J.; Wu, S. T. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE. J. Sel. Top. Quant. Electron. 2017, 23, 1900611.

    Google Scholar 

  23. Yang, J.; Williams, C. L.; Ramasubramaniam, A.; Dauenhauer, P. J. Aqueous-phase hydrodeoxygenation of highly oxygenated aromatics on platinum. Green Chem. 2014, 16, 675–682.

    Article  CAS  Google Scholar 

  24. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

    Article  CAS  Google Scholar 

  25. Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

    Article  Google Scholar 

  26. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature2014, 515, 96–99.

    Article  CAS  Google Scholar 

  27. Li, G. G.; Lin, J. Recent progress in low-voltage cathodoluminescent materials: Synthesis, improvement and emission properties. Chem. Soc. Rev. 2014, 43, 7099–7131.

    Article  CAS  Google Scholar 

  28. Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780.

    Article  Google Scholar 

  29. Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15–18.

    Article  CAS  Google Scholar 

  30. Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516–3521.

    Article  CAS  Google Scholar 

  31. Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

    Article  CAS  Google Scholar 

  32. Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.

    Article  CAS  Google Scholar 

  33. Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473–6475.

    Article  CAS  Google Scholar 

  34. Oh, J. H.; Yang, S. J.; Do, Y. R. Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light: Sci. Appl., 2014, 3, e141.

    Article  CAS  Google Scholar 

  35. Chen, Y. H.; Zheng, M. T.; Xiao, Y.; Dong, H. W.; Zhang, H. R.; Zhuang, J. L.; Hu, H.; Lei, B. F.; Liu, Y. L. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 2016, 28, 312–318.

    Article  CAS  Google Scholar 

  36. Li, X. M.; Liu, Y. L.; Song, X. F.; Wang, H.; Gu, H. S.; Zeng, H. B. Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes. Angew. Chem., Int. Ed. 2015, 54, 1759–1764.

    Article  CAS  Google Scholar 

  37. Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.

    Article  Google Scholar 

  38. Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem. 2016, 128, 8056–8061.

    Article  Google Scholar 

  39. Zhang, X. J.; Wang, H. C.; Tang, A. C.; Lin, S. Y.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Robust and stable narrow-band green emitter: An option for advanced wide-color-gamut backlight display. Chem. Mater. 2016, 28, 8493–8497.

    Article  CAS  Google Scholar 

  40. Jun, S.; Lee, J.; Jang, E. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes. ACS Nano2013, 7, 1472–1477.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 21573019 and 21872010), the Major Research Plan of the National Natural Science Foundation of China (No. 21233003), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louzhen Fan or Shihe Yang.

Electronic supplementary material

12274_2019_2420_MOESM1_ESM.pdf

Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., He, P., Xi, Z. et al. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 12, 1669–1674 (2019). https://doi.org/10.1007/s12274-019-2420-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2420-x

Keywords

Navigation