Skip to main content
Log in

Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Quasi-two-dimensional (2D) β-Ga2O3 is a rediscovered metal-oxide semiconductor with an ultra-wide bandgap of 4.6–4.9 eV. It has been reported to be a promising material for next-generation power and radio frequency electronics. Field effect transistors (FETs) that can switch at high voltage are key components in power and radio frequency devices, and reliable Ohmic contacts are essential for high FET performance. However, obtaining low contact resistance on β-Ga2O3 FETs is difficult since reactions between β-Ga2O3 and metal contacts are not fully understood. Herein, we experimentally demonstrate the importance of reactions at the metal/β-Ga2O3 interface and the corresponding effects of these reactions on FET performance. When Ti is employed as the metal contact, annealing of β-Ga2O3 FETs in argon can effectively transform Schottky contacts into Ohmic contacts and permit a large drain current density of ~ 3.1 mA/μm. The contact resistance (Rcontact) between the Ti electrodes and β-Ga2O3 decreased from ~ 430 to ~ 0.387 Ω·mm after annealing. X-ray photoelectron spectroscopy (XPS) confirmed the formation of oxygen vacancies at the Ti/β-Ga2O3 interface after annealing, which is believed to cause the improved FET performance. The results of this study pave the way for greater application of β-Ga2O3 in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–699.

    Article  Google Scholar 

  2. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  3. Carey, B. J.; Ou, J. Z.; Clark, R. M.; Berean, K. J.; Zavabeti, A.; Chesman, A. S. R.; Russo, S. P.; Lau, D. W. M.; Xu, Z. Q.; Bao, Q. L. et al. Corrigendum: Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 2017, 8, 15116.

    Article  Google Scholar 

  4. Liu, B. L.; Abbas, A.; Zhou, C. W. Two-dimensional semiconductors: From materials preparation to electronic applications. Adv. Electron. Mater. 2017, 3, 1700045.

    Article  Google Scholar 

  5. Kalantar-Zadeh, K.; Ou, J. Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M. S. Two dimensional and layered transition metal oxides. Appl. Mater. Today 2016, 5, 73–89.

    Article  Google Scholar 

  6. Hwang, W. S.; Verma, A.; Peelaers, H.; Protasenko, V.; Rouvimov, S.; Xing, H. L.; Seabaugh, A.; Haensch, W.; van de Walle, C.; Galazka, Z. et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett. 2014, 104, 203111.

    Article  Google Scholar 

  7. Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Hoi Wong, M.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 metaloxide- semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 2013, 103, 123511.

    Article  Google Scholar 

  8. Irmscher, K.; Galazka, Z.; Pietsch, M.; Uecker, R.; Fornari, R. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J. Appl. Phys. 2011, 110, 063720.

    Article  Google Scholar 

  9. Zhou, H.; Si, M. W; Alghamdi, S.; Qiu, G.; Yang, L. M.; Ye, P. D. Highperformance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett. 2017, 38, 103–106.

    Article  Google Scholar 

  10. Wu, F. Q.; Chen, L.; Zhang, A. Y.; Hong, Y. L.; Shih, N. Y.; Cho, S. Y.; Drake, G. A.; Fleetham, T.; Cong, S.; Cao, X. et al. High-performance sub-micrometer channel WSe2 field-effect transistors prepared using a flood–dike printing method. ACS Nano 2017, 11, 12536–12546.

    Article  Google Scholar 

  11. Galazka, Z.; Uecker, R.; Irmscher, K.; Albrecht, M.; Klimm, D.; Pietsch, M.; Brützam, M.; Bertram, R.; Ganschow, S.; Fornari, R. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 2010, 45, 1229–1236.

    Article  Google Scholar 

  12. Åhman, J.; Svensson, G.; Albertsson, J. A reinvestigation of β-gallium oxide. Acta Cryst. Sect C 1996, 52, 1336–1338.

    Article  Google Scholar 

  13. Lovejoy, T. C.; Yitamben, E. N.; Shamir, N.; Morales, J.; Villora, E. G.; Shimamura, K.; Zheng, S.; Ohuchi, F. S.; Olmstead, M. A. Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100). Appl. Phys. Lett. 2009, 94, 081906.

    Article  Google Scholar 

  14. Ma, N.; Tanen, N.; Verma, A.; Guo, Z.; Luo, T. F.; Xing, H. L.; Jena, D. Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 2016, 109, 212101.

    Article  Google Scholar 

  15. Ramana, C. V.; Rubio, E. J.; Barraza, C. D.; Miranda Gallardo, A.; McPeak, S.; Kotru, S.; Grant, J. T. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films. J. Appl. Phys. 2014, 115, 043508.

    Article  Google Scholar 

  16. Zhou, H.; Maize, K.; Noh, J.; Shakouri, A.; Ye, P. D. Thermodynamic studies of β-Ga2O3 nanomembrane field-effect transistors on a sapphire substrate. ACS Omega 2017, 2, 7723–7729.

    Article  Google Scholar 

  17. Green, A. J.; Chabak, K. D.; Heller, E. R.; Fitch, R. C.; Baldini, M.; Fiedler, A.; Irmscher, K.; Wagner, G.; Galazka, Z.; Tetlak, S. E. et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3MOSFETs. IEEE Electron Device Lett. 2016, 37, 902–905.

    Article  Google Scholar 

  18. Wong, M. H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-plated Ga2O3MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 2016, 37, 212–215.

    Article  Google Scholar 

  19. Green, A. J.; Chabak, K. D.; Baldini, M.; Moser, N.; Gilbert, R.; Fitch, R. C.; Wagner, G.; Galazka, Z.; McCandless, J.; Crespo, A. et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 2017, 38, 790–793.

    Article  Google Scholar 

  20. Chang, P. C.; Fan, Z. Y.; Tseng, W. Y.; Rajagopal, A.; Lu, J. G. β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor. Appl. Phys. Lett. 2005, 87, 222102.

    Article  Google Scholar 

  21. Farzana, E.; Zhang, Z.; Paul, P. K.; Arehart, A. R.; Ringel, S. A. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 2017, 110, 202102.

    Article  Google Scholar 

  22. Yao, Y.; Davis, R. F.; Porter, L. M. Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties. J. Electron. Mater. 2017, 46, 2053–2060.

    Article  Google Scholar 

  23. Ma, Y. Q.; Shen, C. F.; Zhang, A. Y.; Chen, L.; Liu, Y. H.; Chen, J. H.; Liu, Q. Z.; Li, Z.; Amer, M. R.; Nilges, T. et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano 2017, 11, 7126–7133.

    Article  Google Scholar 

  24. Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541–1544.

    Article  Google Scholar 

  25. Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383–7391.

    Article  Google Scholar 

  26. English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824–3830.

    Article  Google Scholar 

  27. Brillson, L. J. Chemical reaction and charge redistribution at metal–semiconductor interfaces. J. Vac. Sci. Technol. 1978, 15, 1378–1383.

    Article  Google Scholar 

  28. Guo, Y. F.; Zhou, J. Y.; Liu, Y. J.; Zhou, X.; Yao, F. R.; Tan, C. W.; Wu, J. X.; Lin, L.; Liu, K. H.; Liu, Z. F. et al. Chemical intercalation of topological insulator grid nanostructures for high-performance transparent electrodes. Adv. Mater. 2017, 29, 1703424.

    Article  Google Scholar 

  29. Mosbacker, H. L.; Strzhemechny, Y. M.; White, B. D.; Smith, P. E.; Look, D. C.; Reynolds, D. C.; Litton, C. W.; Brillson, L. J. Role of near-surface states in Ohmic-Schottky conversion of Au contacts to ZnO. Appl. Phys. Lett. 2005, 87, 012102.

    Article  Google Scholar 

  30. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36.

    Article  Google Scholar 

  31. Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.

    Article  Google Scholar 

  32. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663.

    Article  Google Scholar 

  33. Yang, J. J.; Strachan, J. P.; Xia, Q. F.; Ohlberg, D. A. A.; Kuekes, P. J.; Kelley, R. D.; Stickle, W. F.; Stewart, D. R.; Medeiros-Ribeiro, G.; Williams, R. S. Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 2010, 22, 4034–4038.

    Article  Google Scholar 

  34. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

    Article  Google Scholar 

  35. Gao, X.; Xia, Y. D.; Ji, J. F.; Xu, H. N.; Su, Y.; Li, H. T.; Yang, C. J.; Guo, H. X.; Yin, J.; Liu, Z. G. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films. Appl. Phys. Lett. 2010, 97, 193501.

    Article  Google Scholar 

  36. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  37. Liu, B. L.; Ma, Y. Q.; Zhang, A. Y.; Chen, L.; Abbas, A. N.; Liu, Y. H.; Shen, C. F.; Wan, H. C.; Zhou, C. W. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 2016, 10, 5153–5160.

    Article  Google Scholar 

  38. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2012, 12, 207–211.

    Article  Google Scholar 

  39. Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

    Article  Google Scholar 

  40. Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592–4597.

    Article  Google Scholar 

  41. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.

    Article  Google Scholar 

  42. Waldner, P.; Eriksson, G. Thermodynamic modelling of the system titanium-oxygen. Calphad 1999, 23, 189–218.

    Article  Google Scholar 

  43. Yang, J. J.; Strachan, J. P.; Miao, F.; Zhang, M. X.; Pickett, M. D.; Yi, W.; Ohlberg, D. A. A.; Medeiros-Ribeiro, G.; Williams, R. S. Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 2011, 102, 785–789.

    Article  Google Scholar 

  44. Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 2004, 79, 439–442.

    Article  Google Scholar 

  45. Liu, Q. Z.; Liu, Y. H.; Wu, F. Q.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A. N.; Amer, M. R.; Zhou, C. W. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018, 12, 1170–1178.

    Article  Google Scholar 

  46. Hollinger, G.; Skheyta-Kabbani, R.; Gendry, M. Oxides on GaAs and InAs surfaces: An X-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. Phys. Rev. B 1994, 49, 11159–11167.

    Article  Google Scholar 

  47. Dong, L. P.; Jia, R. X.; Xin, B.; Peng, B.; Zhang, Y. M. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 2017, 7, 40160.

    Article  Google Scholar 

  48. Varley, J. B.; Weber, J. R.; Janotti, A.; van de Walle, C. G. Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 2010, 97, 142106.

    Article  Google Scholar 

  49. Carey IV, P. H.; Yang, J. C.; Ren, F.; Hays, D. C.; Pearton, S. J.; Jang, S.; Kuramata, A.; Kravchenko, I. I. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au. AIP Adv. 2017, 7, 095313.

    Article  Google Scholar 

  50. Carey IV, P. H.; Yang, J. C.; Ren, F.; Hays, D. C.; Pearton, S. J.; Kuramata, A.; Kravchenko, I. I. Improvement of Ohmic contacts on Ga2O3 through use of ITO-interlayers. J. Vac. Sci. Technol. B 2017, 35, 061201.

    Article  Google Scholar 

  51. Qian, Y. P.; Guo, D. Y.; Chu, X. L.; Shi, H. Z.; Zhu, W. K.; Wang, K.; Huang, X. K.; Wang, H. et al. Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector. Mater. Lett. 2017, 209, 558–561.

    Article  Google Scholar 

  52. Strachan, J. P.; Pickett, M. D.; Yang, J. J.; Aloni, S.; David, K. A. L.; Medeiros-Ribeiro, G.; Stanley Williams, R. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 2010, 22, 3573–3577.

    Article  Google Scholar 

  53. Zhao, Y. Y.; Frost, R. L. Raman spectroscopy and characterisation of α-gallium oxyhydroxide and β-gallium oxide nanorods. J. Raman Spectrosc. 2008, 39, 1494–1501.

    Article  Google Scholar 

  54. Bourque, J. L.; Biesinger, M. C.; Baines, K. M. Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. 2016, 45, 7678–7696.

    Article  Google Scholar 

  55. Naumkin, A. V.; Kraut-Vass, A.; Gaarenstroom, S. W.; Powell, C. J. NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, version 4.1. Gaithersburg MD: National Institute of Standards and Technology, 2000.

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Nanotechnologies (CEGN). A portion of the images and data used in this article were acquired at The Center for Electron Microscopy and Microanalysis, University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Y., Zhang, A. et al. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies. Nano Res. 12, 143–148 (2019). https://doi.org/10.1007/s12274-018-2193-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2193-7

Keywords

Navigation