Skip to main content
Log in

Current taxane formulations and emerging cabazitaxel delivery systems

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cabazitaxel is a second-generation taxane with promising anti-tumor activity and is approved for treating hormone-refractory metastatic prostate cancer previously treated with docetaxel. Although first-generation taxanes (i.e. paclitaxel and docetaxel) have sparked broad interest in a variety of drug delivery vehicles, fewer have yet been developed for cabazitaxel. This review summarizes several clinical-stage approaches for taxane formulation and recent efforts to develop novel cabazitaxel delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crown, J.; O’Leary, M. The taxanes: An update. Lancet 2000, 355, 1176–1178.

    Google Scholar 

  2. Yared, J. A.; Tkaczuk, K. H. R. Update on taxane development: New analogs and new formulations. Drug Des. Devel. Ther. 2012, 6, 371–384.

    Google Scholar 

  3. Zhao, P. X.; Astruc, D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012, 7, 952–972.

    Google Scholar 

  4. Zhang, Z. P.; Mei, L.; Feng, S. S. Paclitaxel drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 325–340.

    Google Scholar 

  5. Paller, C. J.; Antonarakis, E. S. Cabazitaxel: A novel secondline treatment for metastatic castration–resistant prostate cancer. Drug Des. Devel. Ther. 2011, 5, 117–124.

    Google Scholar 

  6. Kartner, N.; Riordan, J. R.; Ling, V. Cell surface P–glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983, 221, 1285–1288.

    Google Scholar 

  7. Vrignaud, P.; Sémiond, D.; Lejeune, P.; Bouchard, H.; Calvet, L.; Combeau, C.; Riou, J. F.; Commerçon, A.; Lavelle, F.; Bissery, M. C. Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane–resistant tumors. Clin. Cancer Res. 2013, 19, 2973–2983.

    Google Scholar 

  8. De Bono, J. S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J. P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M. J.; Shen, L. J. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration–resistant prostate cancer progressing after docetaxel treatment: A randomised open–label trial. Lancet 2010, 376, 1147–1154.

    Google Scholar 

  9. Cragg, G. M. Paclitaxel (Taxol®): A success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev. 1998, 18, 315–331.

    Google Scholar 

  10. Cragg, G. M.; Newman, D. J. A tale of two tumor targets: Topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J. Nat. Prod. 2004, 67, 232–244.

    Google Scholar 

  11. Rowinsky, E. Paclitaxel pharmacology and other tumor types. Semin. Oncol. 1998, 24, S19–1–S19–12.

    Google Scholar 

  12. Rowinsky, M.; Eric, K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997, 48, 353–374.

    Google Scholar 

  13. Schiff, P. B.; Fant, J.; Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667.

    Google Scholar 

  14. MacConnachie, A. Docetaxel (Taxotere, Rhone–Poulenc Rorer). Intensive Crit. Care Nurs. 1997, 13, 119–120.

    Google Scholar 

  15. Guenard, D.; Gueritte–Voegelein, F.; Potier, P. Taxol and taxotere: Discovery, chemistry, and structure–activity relationships. Acc. Chem. Res. 1993, 26, 160–167.

    Google Scholar 

  16. Diaz, J. F.; Andreu, J. M. Assembly of purified GDPtubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition. Biochemistry 1993, 32, 2747–2755.

    Google Scholar 

  17. Yusuf, R. Z.; Duan, Z.; Lamendola, D. E.; Penson, R. T.; Seiden, M. V. Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets 2003, 3, 1–19.

    Google Scholar 

  18. Jones, S. E.; Erban, J.; Overmoyer, B.; Budd, G. T.; Hutchins, L.; Lower, E.; Laufman, L.; Sundaram, S.; Urba, W. J.; Pritchard, K. I. et al. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J. Clin. Oncol. 2005, 23, 5542–5551.

    Google Scholar 

  19. Lee, K. S.; Chung, H. C.; Im, S. A.; Park, Y. H.; Kim, C. S.; Kim, S. B.; Rha, S. Y.; Lee, M. Y.; Ro, J. Multicenter phase II trial of Genexol–PM, a cremophor–free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2008, 108, 241–250.

    Google Scholar 

  20. Untch, M.; Untch, A.; Sevin, B. U.; Angioli, R.; Perras, J. P.; Koechli, O.; Averette, H. E. Comparison of paclitaxel and docetaxel (Taxotere) in gynecologic and breast cancer cell lines with the ATP–cell viability assay. Anti–Cancer Drugs 1994, 5, 24–30.

    Google Scholar 

  21. Valero, V.; Jones, S. E.; Von Hoff, D. D.; Booser, D. J.; Mennel, R. G.; Ravdin, P. M.; Holmes, F. A.; Rahman, Z.; Schottstaedt, M. W.; Erban, J. K. et al. A phase II study of docetaxel in patients with paclitaxel–resistant metastatic breast cancer. J. Clin. Oncol. 1998, 16, 3362–3368.

    Google Scholar 

  22. Verschraegen, C. F.; Sittisomwong, T.; Kudelka, A. P.; de Paula Guedes, E.; Steger, M.; Nelson–Taylor, T.; Vincent, M.; Rogers, R.; Atkinson, E. N.; Kavanagh, J. J. Docetaxel for patients with paclitaxel–resistant Mullerian carcinoma. J. Clin. Oncol. 2000, 18, 2733–2739.

    Google Scholar 

  23. Horwitz, S. B.; Cohen, D.; Rao, S.; Ringel, I.; Shen, H. J.; Yang, C. P. Taxol: Mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr. 1993, 55–61.

    Google Scholar 

  24. Lockhart, A. C.; Tirona, R. G.; Kim, R. B. Pharmacogenetics of ATP–binding cassette transporters in cancer and chemotherapy. Mol. Cancer Ther. 2003, 2, 685–698.

    Google Scholar 

  25. Childs, S.; Yeh, R. L.; Hui, D.; Ling, V. Taxol resistance mediated by transfection of the liver–specific sister gene of P–glycoprotein. Cancer Res. 1998, 58, 4160–4167.

    Google Scholar 

  26. Hopper–Borge, E.; Chen, Z. S.; Shchaveleva, I.; Belinsky, M. G.; Kruh, G. D. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): Resistance to docetaxel. Cancer Res. 2004, 64, 4927–4930.

    Google Scholar 

  27. Bradshaw, D. M.; Arceci, R. J. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J. Clin. Oncol. 1998, 16, 3674–3690.

    Google Scholar 

  28. Fojo, T.; Menefee, M. Mechanisms of multidrug resistance: The potential role of microtubule–stabilizing agents. Ann. Oncol. 2007, 18, v3–v8.

    Google Scholar 

  29. Perez, E. A. Microtubule inhibitors: Differentiating tubulininhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther. 2009, 8, 2086–2095.

    Google Scholar 

  30. Vrignaud, P.; Semiond, D.; Benning, V.; Beys, E.; Bouchard, H.; Gupta, S. Preclinical profile of cabazitaxel. Drug Des. Devel. Ther. 2014, 8, 1851–1867.

    Google Scholar 

  31. Bouchard, H.; Semiond, D.; Risse, M. L.; Vrignaud, P. Novel taxanes: Cabazitaxel case study. In Analogue–Based Drug Discovery III; Fischer, J.; Ganellin, C. R.; Rotella, D. P., Eds.; Wiley–VCH: Weinheim, Germany, 2012; pp 319–341.

    Google Scholar 

  32. Paller, C. J.; Antonarakis, E. S. Cabazitaxel: A novel second–line treatment for metastatic castration–resistant prostate cancer. Drug Des. Devel. Ther. 2011, 5, 117–124.

    Google Scholar 

  33. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30.

    Google Scholar 

  34. De Bono, J. S.; Scher, H. I.; Montgomery, R. B.; Parker, C.; Miller, M. C.; Tissing, H.; Doyle, G. V.; Terstappen, L. W. W. M.; Pienta, K. J.; Raghavan, D. Circulating tumor cells predict survival benefit from treatment in metastatic castration–resistant prostate cancer. Clin. Cancer Res. 2008, 14, 6302–6309.

    Google Scholar 

  35. Semenas, J.; Allegrucci, C.; A Boorjian, S. A.; Mongan, N. P.; Liao Persson, J. Overcoming drug resistance and treating advanced prostate cancer. Curr. Drug Targets 2012, 13, 1308–1323.

    Google Scholar 

  36. Pean, E.; Demolis, P.; Moreau, A.; Hemmings, R. J.; O’Connor, D.; Brown, D.; Shepard, T.; Abadie, E.; Pignatti, F. The European medicines agency review of cabazitaxel (Jevtana®) for the treatment of hormone–refractory metastatic prostate cancer: Summary of the scientific assessment of the committee for medicinal products for human use. Oncologist 2012, 17, 543–549.

    Google Scholar 

  37. Galsky, M. D.; Dritselis, A.; Kirkpatrick, P.; Oh, W. K. Cabazitaxel. Nat. Rev. Drug Discov. 2010, 9, 677–678.

    Google Scholar 

  38. Mahajan, M.; Kaur Khurana, R.; Shri Sahajpal, N.; Utreja, P.; Sankar, R.; Singh, B.; Kumar Jain, S. Emerging strategies and challenges for controlled delivery of taxanes: A comprehensive review. Curr. Drug Metab. 2015, 16, 453–473.

    Google Scholar 

  39. Swain, S. M.; Arezzo, J. C. Neuropathy associated with microtubule inhibitors: Diagnosis, incidence, and management. Clin. Adv. Hematol. Oncol. 2008, 6, 455–467.

    Google Scholar 

  40. Krebs, A.; Goldie, K. N.; Hoenger, A. Structural rearrangements in tubulin following microtubule formation. EMBO Rep. 2005, 6, 227–232.

    Google Scholar 

  41. Downing, K. H.; Nogales, E. Crystallographic structure of tubulin: Implications for dynamics and drug binding. Cell Struct. Funct. 1999, 24, 269–275.

    Google Scholar 

  42. Abal, M.; Andreu, J.; Barasoain, I. Taxanes: Microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets 2003, 3, 193–203.

    Google Scholar 

  43. Dı́az, J. F.; Valpuesta, J. M.; Chacón, P.; Diakun, G.; Andreu, J. M. Changes in microtubule protofilament number induced by taxol binding to an easily accessible site: Internal microtubule dynamics. J. Biol. Chem. 1998, 273, 33803–33810.

    Google Scholar 

  44. Montero, A.; Fossella, F.; Hortobagyi, G.; Valero, V. Docetaxel for treatment of solid tumours: A systematic review of clinical data. Lancet Oncol. 2005, 6, 229–239.

    Google Scholar 

  45. Balasubramanian, S. V.; Alderfer, J. L.; Straubinger, R. M. Solvent–and concentration–dependent molecular interactions of taxol (paclitaxel). J. Pharm. Sci. 1994, 83, 1470–1476.

    Google Scholar 

  46. Balasubramanian, S. V.; Straubinger, R. M. Taxol–lipid interactions: Taxol–dependent effects on the physical properties of model membranes. Biochemistry 1994, 33, 8941–8947.

    Google Scholar 

  47. Sharma, A.; Straubinger, R. M. Novel taxol formulations: Preparation and characterization of taxol–containing liposomes. Pharm. Res. 1994, 11, 889–896.

    Google Scholar 

  48. Campbell, R. B.; Balasubramanian, S. V.; Straubinger, R. M. Influence of cationic lipids on the stability and membrane properties of paclitaxel–containing liposomes. J. Pharm. Sci. 2001, 90, 1091–1105.

    Google Scholar 

  49. Mu, L.; Feng, S. S. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic–co–glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Release 2001, 76, 239–254.

    Google Scholar 

  50. Lee, I. H.; Park, Y. T.; Roh, K.; Chung, H.; Kwon, I. C.; Jeong, S. Y. Stable paclitaxel formulations in oily contrast medium. J. Control. Release 2005, 102, 415–425.

    Google Scholar 

  51. Straubinger, R. M.; Sharma, A.; Murray, M.; Mayhew, E. Novel taxol formulations: Taxol–containing liposomes. J. Natl. Cancer Inst. Monogr. 1993, 69–78.

    Google Scholar 

  52. Marupudi, N. I.; Han, J. E.; Li, K. W.; Renard, V. M.; Tyler, B. M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf. 2007, 6, 609–621.

    Google Scholar 

  53. Engels, F. K.; Mathot, R. A. A.; Verweij, J. Alternative drug formulations of docetaxel: A review. Anti–Cancer Drugs 2007, 18, 95–103.

    Google Scholar 

  54. Nightingale, G.; Ryu, J. Cabazitaxel (jevtana): A novel agent for metastatic castration–resistant prostate cancer. P. T. 2012, 37, 440–448.

    Google Scholar 

  55. Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598.

    Google Scholar 

  56. Sofias, A. M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30.

    Google Scholar 

  57. Carretta, R. M.; Eisenhauer, E.; Rozencweig, M. Methods for administration of taxol. U.S. Patents 5,641,803 A, June 24, 1997.

    Google Scholar 

  58. Gradishar, W. J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin–bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005, 23, 7794–7803.

    Google Scholar 

  59. Tamura, T.; Sasaki, Y.; Nishiwaki, Y.; Saijo, N. Phase I study of paclitaxel by three–hour infusion: Hypotension just after infusion is one of the major dose–limiting toxicities. Jpn. J. Cancer Res. 1995, 86, 1203–1209.

    Google Scholar 

  60. Gotardo, M. A.; Monteiro, M. Migration of diethylhexyl phthalate from PVC bags into intravenous cyclosporine solutions. J. Pharm. Biomed. Anal. 2005, 38, 709–713.

    Google Scholar 

  61. Venkataramanan, R.; Burckart, G. J.; Ptachcinski, R. J.; Blaha, R.; Logue, L. W.; Bahnson, A.; Giam, C. S.; Brady, J. E. Leaching of diethylhexyl phthalate from polyvinyl chloride bags into intravenous cyclosporine solution. Am. J. Hosp. Pharm. 1986, 43, 2800–2802.

    Google Scholar 

  62. van Tellingen, O.; Beijnen, J. H.; Verweij, J.; Scherrenburg, E. J.; Nooijen, W. J.; Sparreboom, A. Rapid esterasesensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. Clin. Cancer Res. 1999, 5, 2918–2924.

    Google Scholar 

  63. Sparreboom, A.; Verweij, J.; Van der Burg, M. E.; Loos, W. J.; Brouwer, E.; Viganò, L.; Locatelli, A.; de Vos, A. I.; Nooter, K.; Stoter, G. et al. Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype in vivo. Clin. Cancer. Res. 1998, 4, 1937–1942.

    Google Scholar 

  64. Nannan Panday, V. R.; Huizing, M. T.; van Tellingen, O.; Hakvoort, R. A.; Willemse, P. H. B.; de Graeff, A.; Vermorken, J. B.; Beijnen, J. H. Pharmacologic study of Cremophor EL in cancer patients with impaired hepatic function receiving paclitaxel. J. Oncol. Pharm. Pract. 1999, 5, 83–86.

    Google Scholar 

  65. Gelderblom, H.; Verweij, J.; Brouwer, E.; Pillay, M.; de Bruijn, P.; Nooter, K.; Stoter, G.; Sparreboom, A. Disposition of [G–3H]_paclitaxel and Cremophor EL in a patient with severely impaired renal function. Drug Metab. Dispos. 1999, 27, 1300–1305.

    Google Scholar 

  66. Szebeni, J.; Alving, C. R.; Muggia, F. M. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: An in vitro study. J. Natl. Cancer Inst. 1998, 90, 300–306.

    Google Scholar 

  67. Dye, D.; Watkins, J. Suspected anaphylactic reaction to Cremophor EL. Br. Med. J. 1980, 280, 1353.

    Google Scholar 

  68. Weiss, R. B.; Donehower, R. C.; Wiernik, P. H.; Ohnuma, T.; Gralla, R. J.; Trump, D. L.; Baker, J. R., Jr.; Van Echo, D. A.; Von Hoff, D. D.; Leyland–Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990, 8, 1263–1268.

    Google Scholar 

  69. Szebeni, J. Complement activation–related pseudoallergy: A new class of drug–induced acute immune toxicity. Toxicology 2005, 216, 106–121.

    Google Scholar 

  70. van Zuylen, L.; Gianni, L.; Verweij, J.; Mross, K.; Brouwer, E.; Loos, W. J.; Sparreboom, A. Inter–relationships of paclitaxel disposition, infusion duration and Cremophor EL kinetics in cancer patients. Anti–Cancer Drugs 2000, 11, 331–337.

    Google Scholar 

  71. van Zuylen, L.; Verweij, J.; Sparreboom, A. Role of formulation vehicles in taxane pharmacology. Invest. New Drugs 2001, 19, 125–141.

    Google Scholar 

  72. Sparreboom, A.; van Zuylen, L.; Brouwer, E.; Loos, W. J.; de Bruijn, P.; Gelderblom, H.; Pillay, M.; Nooter, K.; Stoter, G.; Verweij, J. Cremophor EL–mediated alteration of paclitaxel distribution in human blood. Cancer Res. 1999, 59, 1454–1457.

    Google Scholar 

  73. Kongshaug, M.; Cheng, L. S.; Moan, J.; Rimington, C. Interaction of Cremophor EL with human plasma. Int. J. Biochem. 1991, 23, 473–478.

    Google Scholar 

  74. Sykes, E.; Woodburn, K.; Decker, D.; Kessel, D. Effects of Cremophor EL on distribution of Taxol to serum lipoproteins. Br. J. Cancer 1994, 70, 401–404.

    Google Scholar 

  75. Expósito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M. H.; Cusido, R. M.; Palazon, J. Biotechnological production of taxol and related taxoids: Current state and prospects. Anti–Cancer Agents Med. Chem. 2009, 9, 109–121.

    Google Scholar 

  76. Vasey, P. A.; Jayson, G. C.; Gordon, A.; Gabra, H.; Coleman, R.; Atkinson, R.; Parkin, D.; Paul, J.; Hay, A.; Kaye, S. B. Phase III randomized trial of docetaxel–carboplatin versus paclitaxel–carboplatin as first–line chemotherapy for ovarian carcinoma. J. Natl. Cancer Inst. 2004, 96, 1682–1691.

    Google Scholar 

  77. Fossella, F. V.; DeVore, R.; Kerr, R. N.; Crawford, J.; Natale, R. R.; Dunphy, F.; Kalman, L.; Miller, V.; Lee, J. S.; Moore, M. et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non–small–cell lung cancer previously treated with platinumcontaining chemotherapy regimens. J. Clin. Oncol. 2000, 18, 2354–2362.

    Google Scholar 

  78. Webster, L. K.; Linsenmeyer, M. E.; Rischin, D.; Urch, M. E.; Woodcock, D. M.; Millward, M. J. Plasma concentrations of polysorbate 80 measured in patients following administration of docetaxel or etoposide. Cancer Chemother. Pharmacol. 1997, 39, 557–560.

    Google Scholar 

  79. Eisenhauer, E. A.; Trudeau, M. An overview of phase II studies of docetaxel in patients with metastatic breast cancer. Eur. J. Cancer 1995, 31, S11–S13.

    Google Scholar 

  80. Green, M. R.; Manikhas, G. M.; Orlov, S.; Afanasyev, B.; Makhson, A. M.; Bhar, P.; Hawkins, M. J. Abraxane®, a novel Cremophor®–free, albumin–bound particle form of paclitaxel for the treatment of advanced non–small–cell lung cancer. Ann. Oncol. 2006, 17, 1263–1268.

    Google Scholar 

  81. Desai, N.; Trieu, V.; Damascelli, B.; Soon–Shiong, P. SPARC expression correlates with tumor response to albumin–bound paclitaxel in head and neck cancer patients. Transl. Oncol. 2009, 2, 59–64.

    Google Scholar 

  82. Gradishar, W. J.; Krasnojon, D.; Cheporov, S.; Makhson, A. N.; Manikhas, G. M.; Clawson, A.; Bhar, P. Significantly longer progression–free survival with nab–paclitaxel compared with docetaxel as first–line therapy for metastatic breast cancer. J. Clin. Oncol. 2009, 27, 3611–3619.

    Google Scholar 

  83. Garlick, R. L.; Mazer, J. S. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J. Biol. Chem. 1983, 258, 6142–6146.

    Google Scholar 

  84. Ait–Oudhia, S.; Straubinger, R. M.; Mager, D. E. Metaanalysis of nanoparticulate paclitaxel delivery system pharmacokinetics and model prediction of associated neutropenia. Pharm. Res. 2012, 29, 2833–2844.

    Google Scholar 

  85. Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.

    Google Scholar 

  86. Hawkins, M. J.; Soon–Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev. 2008, 60, 876–885.

    Google Scholar 

  87. Sage, H.; Johnson, C.; Bornstein, P. Characterization of a novel serum albumin–binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 1984, 259, 3993–4007.

    Google Scholar 

  88. Porter, P. L.; Sage, E. H.; Lane, T. F.; Funk, S. E.; Gown, A. M. Distribution of SPARC in normal and neoplastic human tissue. J. Histochem. Cytochem. 1995, 43, 791–800.

    Google Scholar 

  89. Neesse, A.; Frese, K. K.; Chan, D. S.; Bapiro, T. E.; Howat, W. J.; Richards, F. M.; Ellenrieder, V.; Jodrell, D. I.; Tuveson, D. A. SPARC independent drug delivery and antitumour effects of nab–paclitaxel in genetically engineered mice. Gut 2014, 63, 974–983.

    Google Scholar 

  90. Li, R.; Zheng, K.; Yuan, C.; Chen, Z.; Huang, M. D. Be active or not: The relative contribution of active and passive tumor targeting of nanomaterials. Nanotheranostics 2017, 1, 346–357.

    Google Scholar 

  91. Kim, T. Y.; Kim, D. W.; Chung, J. Y.; Shin, S. G.; Kim, S. C.; Heo, D. S.; Kim, N. K.; Bang, Y. J. Phase I and pharmacokinetic study of Genexol–PM, a cremophor–free, polymeric micelle–formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer. Res. 2004, 10, 3708–3716.

    Google Scholar 

  92. Kim, D. W.; Kim, S. Y.; Kim, H. K.; Kim, S. W.; Shin, S. W.; Kim, J. S.; Park, K.; Lee, M. Y.; Heo, D. S. Multicenter phase II trial of Genexol–PM, a novel cremophor–free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non–small–cell lung cancer. Ann. Oncol. 2007, 18, 2009–2014.

    Google Scholar 

  93. Ventola, C. L. Progress in nanomedicine: Approved and investigational nanodrugs. P. T. 2017, 42, 742–755.

    Google Scholar 

  94. Kato, K.; Chin, K.; Yoshikawa, T.; Yamaguchi, K.; Tsuji, Y.; Esaki, T.; Sakai, K.; Kimura, M.; Hamaguchi, T.; Shimada, Y. et al. Phase II study of NK105, a paclitaxel–incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs 2012, 30, 1621–1627.

    Google Scholar 

  95. Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K. et al. A phase I and pharmacokinetic study of NK105, a paclitaxel–incorporating micellar nanoparticle formulation. Br. J. Cancer 2007, 97, 170–176.

    Google Scholar 

  96. van der Meel, R.; Lammers, T.; Hennink, W. E. Cancer nanomedicines: Oversold or underappreciated? Expert Opin. Drug Deliv. 2017, 14, 1–5.

    Google Scholar 

  97. Jain, M. M.; Gupte, S. U.; Patil, S. G.; Pathak, A. B.; Deshmukh, C. D.; Bhatt, N.; Haritha, C.; Babu, K. G.; Bondarde, S. A.; Digumarti, R. et al. Paclitaxel injection concentrate for nanodispersion versus nab–paclitaxel in women with metastatic breast cancer: A multicenter, randomized, comparative phase II/III study. Breast Cancer Res. Treat. 2016, 156, 125–134.

    Google Scholar 

  98. Stylianopoulos, T.; Jain, R. K. Design considerations for nanotherapeutics in oncology. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1893–1907.

    Google Scholar 

  99. Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966.

    Google Scholar 

  100. Koudelka, Š.; Turánek, J. Liposomal paclitaxel formulations. J. Control. Release 2012, 163, 322–334.

    Google Scholar 

  101. Zhang, Q.; Huang, X. E.; Gao, L. L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed. Pharmacother. 2009, 63, 603–607.

    Google Scholar 

  102. Ye, L.; He, J.; Hu, Z. P.; Dong, Q. J.; Wang, H. B.; Fu, F. H.; Tian, J. W. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem. Toxicol. 2013, 52, 200–206.

    Google Scholar 

  103. ClinicalTrials.gov. Pharmacokinetics Study of Liposomal Paclitaxel in Humans (LPSPK–H) [Online]. https://www.clinicaltrials.gov/ct2/show/NCT00606515 (accessed Mar 23, 2018).

  104. Wang, X. H.; Zhou, J. C.; Wang, Y. S.; Zhu, Z. Y.; Lu, Y.; Wei, Y. Q.; Chen, L. J. A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in nonsmall cell lung cancer patients with malignant pleural effusions. Eur. J. Cancer 2010, 46, 1474–1480.

    Google Scholar 

  105. Fan, Y. C.; Zhang, Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharm. Sci. 2013, 8, 81–87.

    Google Scholar 

  106. Zhang, J. A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterization of a novel Cremophor® EL free liposome–based paclitaxel (LEP–ETU) formulation. Eur. J. Pharm. Biopharm. 2005, 59, 177–187.

    Google Scholar 

  107. Fetterly, G. J.; Grasela, T. H.; Sherman, J. W.; Dul, J. L.; Grahn, A.; Lecomte, D.; Fiedler–Kelly, J.; Damjanov, N.; Fishman, M.; Kane, M. P. et al. Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome–entrapped paclitaxel. Clin. Cancer Res. 2008, 14, 5856–5863.

    Google Scholar 

  108. Slingerland, M.; Guchelaar, H. J.; Rosing, H.; Scheulen, M. E.; van Warmerdam, L. J. C.; Beijnen, J. H.; Gelderblom, H. Bioequivalence of liposome–entrapped paclitaxel easy–to–use (LEP–ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two–period crossover study in patients with advanced cancer. Clin. Ther. 2013, 35, 1946–1954.

    Google Scholar 

  109. Fasol, U.; Frost, A.; Büchert, M.; Arends, J.; Fiedler, U.; Scharr, D.; Scheuenpflug, J.; Mross, K. Vascular and pharmacokinetic effects of EndoTAG–1 in patients with advanced cancer and liver metastasis. Ann. Oncol. 2012, 23, 1030–1036.

    Google Scholar 

  110. Eichhorn, M. E.; Ischenko, I.; Luedemann, S.; Strieth, S.; Papyan, A.; Werner, A.; Bohnenkamp, H.; Guenzi, E.; Preissler, G.; Michaelis, U. et al. Vascular targeting by EndoTAG™–1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer. Int. J. Cancer 2010, 126, 1235–1245.

    Google Scholar 

  111. Bode, C.; Trojan, L.; Weiss, C.; Kraenzlin, B.; Michaelis, U.; Teifel, M.; Alken, P.; Michel, M. S. Paclitaxel encapsulated in cationic liposomes: A new option for neovascular targeting for the treatment of prostate cancer. Oncol. Rep. 2009, 22, 321–326.

    Google Scholar 

  112. Thurston, G.; McLean, J. W.; Rizen, M.; Baluk, P.; Haskell, A.; Murphy, T. J.; Hanahan, D.; McDonald, D. M. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 1998, 101, 1401–1413.

    Google Scholar 

  113. Luo, D. D.; Geng, J. M.; Li, N. S.; Carter, K. A.; Shao, S.; Atilla–Gokcumen, G. E.; Lovell, J. F. Vessel–targeted chemophototherapy with cationic porphyrin–phospholipid liposomes. Mol. Cancer Ther. 2017, 16, 2452–2461.

    Google Scholar 

  114. Löhr, J. M.; Haas, S. L.; Bechstein, W. O.; Bodoky, G.; Cwiertka, K.; Fischbach, W.; Fölsch, U. R.; Jäger, D.; Osinsky, D.; Prausova, J. et al. Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: A randomized controlled phase II trial. Ann. Oncol. 2012, 23, 1214–1222.

    Google Scholar 

  115. Lee, I. H.; Hong, J. W.; Jang, Y.; Park, Y. T.; Chung, H. Development, optimization and absorption mechanism of DHP107, oral paclitaxel formulation for single–agent anticancer therapy. In New Advances in the Basic and Clinical Gastroenterology; Brzozowski, T., Ed.; INTECH Open Access Publisher, 2012; pp 357–374.

    Google Scholar 

  116. Hong, J. W.; Lee, I. H.; Kwak, Y. H.; Park, Y. T.; Sung, H. C.; Kwon, I. C.; Chung, H. Efficacy and tissue distribution of DHP107, an oral paclitaxel formulation. Mol. Cancer Ther. 2007, 6, 3239–3247.

    Google Scholar 

  117. Hong, Y. S.; Kim, K. P.; Lim, H. S.; Bae, K. S.; Ryu, M. H.; Lee, J. L.; Chang, H. M.; Kang, Y. K.; Kim, H.; Kim, T. W. A phase I study of DHP107, a mucoadhesive lipid form of oral paclitaxel, in patients with advanced solid tumors: Crossover comparisons with intravenous paclitaxel. Invest. New Drugs 2013, 31, 616–622.

    Google Scholar 

  118. Kang, Y. K.; Ryu, M. H.; Park, S. H.; Park, S. R.; Kim, J. G.; Kim, J. W.; Cho, S. H.; Park, Y. I.; Rha, S. Y.; Kang, M. J. Efficacy and safety findings from DREAM: A phase III study of DHP107 (oral paclitaxel) vs IV paclitaxel in patients with gastric cancer after failure of first–line chemotherapy. Am. Soc. Clin. Oncol. 2016, 34, 4016.

    Google Scholar 

  119. Sparreboom, A.; Van Asperen, J.; Mayer, U.; Schinkel, A. H.; Smit, J. W.; Meijer, D. K.; Borst, P.; Nooijen, W. J.; Beijnen, J. H.; Van Tellingen, O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P–glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA 1997, 94, 2031–2035.

    Google Scholar 

  120. Paek, I. B.; Ji, H. Y.; Lee, G. S.; Lee, H. S. Simultaneous determination of paclitaxel and a new P–glycoprotein inhibitor HM–30181 in rat plasma by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2006, 29, 628–634.

    Google Scholar 

  121. Lee, K. W.; Lee, K. H.; Zang, D. Y.; Park, Y. I.; Shin, D. B.; Kim, J. W.; Im, S. A.; Koh, S. A.; Yu, K. S.; Cho, J. Y. et al. Phase I/II study of weekly oraxol for the second–line treatment of patients with metastatic or recurrent gastric cancer. Oncologist 2015, 20, 896–897.

    Google Scholar 

  122. Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008, 7, 255–270.

    Google Scholar 

  123. Skwarczynski, M.; Hayashi, Y.; Kiso, Y. Paclitaxel prodrugs: Toward smarter delivery of anticancer agents. J. Med. Chem. 2006, 49, 7253–7269.

    Google Scholar 

  124. Terwogt, J. M. M.; ten Bokkel Huinink, W. W.; Schellens, J. H. M.; Schot, M.; Mandjes, I. A. M.; Zurlo, M. G.; Rocchetti, M.; Rosing, H.; Koopman, F. J.; Beijnen, J. H. Phase I clinical and pharmacokinetic study of PNU166945, a novel water–soluble polymer–conjugated prodrug of paclitaxel. Anti–Cancer Drugs 2001, 12, 315–323.

    Google Scholar 

  125. Fracasso, P. M.; Picus, J.; Wildi, J. D.; Goodner, S. A.; Creekmore, A. N.; Gao, F.; Govindan, R.; Ellis, M. J.; Tan, B. R.; Linette, G. P. et al. Phase 1 and pharmacokinetic study of weekly docosahexaenoic acid–paclitaxel, Taxoprexin®, in resistant solid tumor malignancies. Cancer Chemother. Pharmacol. 2009, 63, 451–458.

    Google Scholar 

  126. Homsi, J.; Bedikian, A. Y.; Papadopoulos, N. E.; Kim, K. B.; Hwu, W. J.; Mahoney, S. L.; Hwu, P. Phase 2 open–label study of weekly docosahexaenoic acid–paclitaxel in patients with metastatic uveal melanoma. Melanoma Res. 2010, 20, 507–510.

    Google Scholar 

  127. Jones, R. J.; Hawkins, R. E.; Eatock, M. M.; Ferry, D. R.; Eskens, F. A. L. M.; Wilke, H.; Evans, T. J. J. A phase II open–label study of DHA–paclitaxel (Taxoprexin) by 2–h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma. Cancer Chemother. Pharmacol. 2008, 61, 435–441.

    Google Scholar 

  128. Luo, D. D.; Carter, K. A.; Lovell, J. F. Nanomedical engineering: Shaping future nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 169–188.

    Google Scholar 

  129. Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355.

    Google Scholar 

  130. Maeda, H. Tumor–selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chem. 2010, 21, 797–802.

    Google Scholar 

  131. Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J. M. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 2007, 24, 1029–1046.

    Google Scholar 

  132. Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J. C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release 2005, 109, 169–188.

    Google Scholar 

  133. Li, J.; Stayshich, R. M.; Meyer, T. Y. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J. Am. Chem. Soc. 2011, 133, 6910–6913.

    Google Scholar 

  134. Makadia, H. K.; Siegel, S. J. Poly lactic–co–glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

    Google Scholar 

  135. Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 714–729.

    Google Scholar 

  136. Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B: Biointerfaces 2010, 75, 1–18.

    Google Scholar 

  137. Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly (lactide–co–glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475–2490.

    Google Scholar 

  138. Esmaeili, F.; Ghahremani, M. H.; Esmaeili, B.; Khoshayand, M. R.; Atyabi, F.; Dinarvand, R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int. J. Pharm. 2008, 349, 249–255.

    Google Scholar 

  139. Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J. F. W.; Hennink, W. E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res. 2010, 27, 2569–2589.

    Google Scholar 

  140. Coleman, R. E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s.

    Google Scholar 

  141. Gdowski, A. S.; Ranjan, A.; Sarker, M. R.; Vishwanatha, J. K. Bone–targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine 2017, 12, 2083–2095.

    Google Scholar 

  142. Zhang, Z.; Xiong, X. Q.; Wan, J. L.; Xiao, L.; Gan, L.; Feng, Y. M.; Xu, H. B.; Yang, X. L. Cellular uptake and intracellular trafficking of PEG–b–PLA polymeric micelles. Biomaterials 2012, 33, 7233–7240.

    Google Scholar 

  143. Han, X. X.; Chen, D.; Sun, J.; Zhou, J. S.; Li, D.; Gong, F. R.; Shen, Y. L. A novel cabazitaxel–loaded polymeric micelle system with superior in vitro stability and long blood circulation time. J. Biomater. Sci., Polym. Ed. 2016, 27, 626–642.

    Google Scholar 

  144. Zhuang, B.; Du, L.; Xu, H. X.; Xu, X. L.; Wang, C.; Fan, Y. F.; Cong, M. Y.; Yin, J. Q.; Li, H. X.; Guan, H. S. Self–assembled micelle loading cabazitaxel for therapy of lung cancer. Int. J. Pharm. 2016, 499, 146–155.

    Google Scholar 

  145. Mahdaviani, P.; Bahadorikhalili, S.; Navaei–Nigjeh, M.; Vafaei, S. Y.; Esfandyari–Manesh, M.; Abdolghaffari, A. H.; Daman, Z.; Atyabi, F.; Ghahremani, M. H.; Amini, M. et al. Peptide functionalized poly ethylene glycol–poly caprolactone nanomicelles for specific cabazitaxel delivery to metastatic breast cancer cells. Mater. Sci. Eng. C 2017, 80, 301–312.

    Google Scholar 

  146. Herold, D. A.; Keil, K.; Bruns, D. E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacol. 1989, 38, 73–76.

    Google Scholar 

  147. Garay, R. P.; Labaune, J. P. Immunogenicity of polyethylene glycol (PEG). Open Conf. Proc. J. 2011, 2, 104–107.

    Google Scholar 

  148. Cheng, T. L.; Wu, P. Y.; Wu, M. F.; Chern, J. W.; Roffler, S. R. Accelerated clearance of polyethylene glycol–modified proteins by anti–polyethylene glycol IgM. Bioconjugate Chem. 1999, 10, 520–528.

    Google Scholar 

  149. Yang, Q.; Wang, K.; Nie, J. J.; Du, B. Y.; Tang, G. P. Poly(N–vinylpyrrolidinone) microgels: Preparation, biocompatibility, and potential application as drug carriers. Biomacromolecules 2014, 15, 2285–2293.

    Google Scholar 

  150. Bailly, N.; Thomas, M.; Klumperman, B. Poly(Nvinylpyrrolidone)–block–poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs. Biomacromolecules 2012, 13, 4109–4117.

    Google Scholar 

  151. Zhu, Z. S.; Li, Y.; Li, X. L.; Li, R. T.; Jia, Z. J.; Liu, B. R.; Guo, W. H.; Wu, W.; Jiang, X. Q. Paclitaxel–loaded poly(N–vinylpyrrolidone)–b–poly(ε–caprolactone) nanoparticles: Preparation and antitumor activity in vivo. J. Control. Release 2010, 142, 438–446.

    Google Scholar 

  152. Xie, C.; Zhang, P.; Zhang, Z. K.; Yang, C. C.; Zhang, J. L.; Wu, W.; Jiang, X. Q. Drug–loaded pseudo–block copolymer micelles with a multi–armed star polymer as the micellar exterior. Nanoscale 2015, 7, 12572–12580.

    Google Scholar 

  153. Aydin, O.; Youssef, I.; Yuksel Durmaz, Y.; Tiruchinapally, G.; ElSayed, M. E. H. Formulation of acid–sensitive micelles for delivery of cabazitaxel into prostate cancer cells. Mol. Pharm. 2016, 13, 1413–1429.

    Google Scholar 

  154. Weiszhár, Z.; Czúcz, J.; Révész, C.; Rosivall, L.; Szebeni, J.; Rozsnyay, Z. Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor–EL, Tween–80 and Tween–20. Eur. J. Pharm. Sci. 2012, 45, 492–498.

    Google Scholar 

  155. Zhang, Y. M.; Song, W. T.; Geng, J. M.; Chitgupi, U.; Unsal, H.; Federizon, J.; Rzayev, J.; Sukumaran, D. K.; Alexandridis, P.; Lovell, J. F. Therapeutic surfactant–stripped frozen micelles. Nat. Commun. 2016, 7, 11649.

    Google Scholar 

  156. Zhang, Y. M.; Wang, D. P.; Goel, S.; Sun, B. Y.; Chitgupi, U.; Geng, J. M.; Sun, H. Y.; Barnhart, T. E.; Cai, W. B.; Xia, J. et al. Surfactant–stripped frozen pheophytin micelles for multimodal gut imaging. Adv. Mater. 2016, 28, 8524–8530.

    Google Scholar 

  157. Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1.

    Google Scholar 

  158. Shao, Y. J.; Zhang, C. G.; Yao, Q.; Wang, Y. Q.; Tian, B.; Tang, X.; Wang, Y. J. Improving cabazitaxel chemical stability in parenteral lipid emulsions using cholesterol. Eur. J. Pharm. Sci. 2014, 52, 1–11.

    Google Scholar 

  159. Ananias, H. J. K.; De Jong, I. J.; Dierckx, R. A.; van de Wiele, C.; Helfrich, W.; Elsinga, P. H. Nuclear imaging of prostate cancer with gastrin–releasing–peptide–receptor targeted radiopharmaceuticals. Curr. Pharm. Des. 2008, 14, 3033–3047.

    Google Scholar 

  160. Safavy, A.; Khazaeli, M. B.; Qin, H. Y.; Buchsbaum, D. J. Synthesis of bombesin analogues for radiolabeling with rhenium–188. Cancer 1997, 80, 2354–2359.

    Google Scholar 

  161. Kulhari, H.; Pooja, D.; Shrivastava, S.V.G.M, N.; Sistla, R. Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. Colloids Surf. B: Biointerfaces 2014, 117, 166–173.

    Google Scholar 

  162. Chen, W. J.; Guo, M.; Wang, S. L. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano–sized drug delivery system. Drug Dev. Ind. Pharm. 2016, 42, 1968–1976.

    Google Scholar 

  163. Song, Y.; Tian, Q.; Huang, Z.; Fan, D.; She, Z.; Liu, X.; Cheng, X.; Yu, B.; Deng, Y. Self–assembled micelles of novel amphiphilic copolymer cholesterol–coupled F68 containing cabazitaxel as a drug delivery system. Int. J. Nanomedicine 2014, 9, 2307–2317.

    Google Scholar 

  164. Shahgaldian, P.; Da Silva, E.; Coleman, A. W.; Rather, B.; Zaworotko, M. J. Para–acyl–calix–arene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. Int. J. Pharm. 2003, 253, 23–38.

    Google Scholar 

  165. Qi, J. P.; Lu, Y.; Wu, W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr. Drug Metab. 2012, 13, 418–428.

    Google Scholar 

  166. Zhu, C. J.; An, C. G. Enhanced antitumor activity of cabazitaxel targeting CD44+ receptor in breast cancer cell line via surface functionalized lipid nanocarriers. Trop. J. Pharm. Res. 2017, 16, 1383–1390.

    Google Scholar 

  167. Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183.

    Google Scholar 

  168. Kratz, F. A clinical update of using albumin as a drug vehicle—A commentary. J. Control. Release 2014, 190, 331–336.

    Google Scholar 

  169. Qu, N.; Lee, R. J.; Sun, Y.; Cai, G.; Wang, J.; Wang, M.; Lu, J.; Meng, Q.; Teng, L.; Wang, D. et al. Cabazitaxel–loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. Int. J. Nanomed. 2016, 11, 3451–3459.

    Google Scholar 

  170. Qu, N.; Sun, Y. T.; Xie, J.; Teng, L. S. Preparation and evaluation of in vitro self–assembling HSA nanoparticles for cabazitaxel. Anti–Cancer Agents Med. Chem. 2017, 17, 294–300.

    Google Scholar 

  171. Huang, H. Y.; Lovell, J. F. Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 2017, 27, 1603524.

    Google Scholar 

  172. Tai, X. W.; Wang, Y.; Zhang, L.; Yang, Y. T.; Shi, K. R.; Ruan, S. B.; Liu, Y. Y.; Gao, H. L.; Zhang, Z. R.; He, Q. Cabazitaxel and indocyanine green co–delivery tumortargeting nanoparticle for improved antitumor efficacy and minimized drug toxicity. J. Drug Target. 2017, 25, 179–187.

    Google Scholar 

  173. Shafirstein, G.; Bäumler, W.; Hennings, L. J.; Siegel, E. R.; Friedman, R.; Moreno, M. A.; Webber, J.; Jackson, C.; Griffin, R. J. Indocyanine green enhanced near–infrared laser treatment of murine mammary carcinoma. Int. J. Cancer 2012, 130, 1208–1215.

    Google Scholar 

  174. Reza, A. T.; Nicoll, S. B. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater. 2010, 6, 179–186.

    Google Scholar 

  175. Toğrul, H.; Arslan, N. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr. Polym. 2003, 54, 73–82.

    Google Scholar 

  176. Hoang, B.; Ernsting, M. J.; Tang, W. H. S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S. D. Cabazitaxel–conjugated nanoparticles for docetaxel–resistant and bone metastatic prostate cancer. Cancer Lett. 2017, 410, 169–179.

    Google Scholar 

  177. Ernsting, M. J.; Murakami, M.; Undzys, E.; Aman, A.; Press, B.; Li, S. D. A docetaxel–carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J. Control. Release 2012, 162, 575–581.

    Google Scholar 

  178. Ernsting, M. J.; Tang, W. L.; MacCallum, N. W.; Li, S. D. Preclinical pharmacokinetic, biodistribution, and anti–cancer efficacy studies of a docetaxel–carboxymethylcellulose nanoparticle in mouse models. Biomaterials 2012, 33, 1445–1454.

    Google Scholar 

  179. Bteich, J.; McManus, S. A.; Ernsting, M. J.; Mohammed, M. Z.; Prud'homme, R. K.; Sokoll, K. K. Using flash nanoprecipitation to produce highly potent and stable cellax nanoparticles from amphiphilic polymers derived from carboxymethyl cellulose, polyethylene glycol, and cabazitaxel. Mol. Pharm. 2017, 14, 3998–4007.

    Google Scholar 

  180. Müller, R. H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177.

    Google Scholar 

  181. Kan, P.; Chen, Z. B.; Lee, C. J.; Chu, I. M. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J. Control. Release 1999, 58, 271–278.

    Google Scholar 

  182. Khoeeniha, M. K.; Esfandyari–Manesh, M.; Behrouz, H.; Amini, M.; Varnamkhasti, B. S.; Atyabi, F.; Dinarvand, R. Targeted delivery of cabazitaxel by conjugation to albumin–PEG–folate nanoparticles using a cysteine–acrylate linker and simple synthesis conditions. Curr. Drug Deliv. 2017, 14, 1120–1129.

    Google Scholar 

  183. Schacher, F. H.; Rupar, P. A.; Manners, I. Functional block copolymers: Nanostructured materials with emerging applications. Angew. Chem., Int. Ed. 2012, 51, 7898–7921.

    Google Scholar 

  184. Gu, F.; Zhang, L. F.; Teply, B. A.; Mann, N.; Wang, A.; Radovic–Moreno, A. F.; Langer, R.; Farokhzad, O. C. Precise engineering of targeted nanoparticles by using self–assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA 2008, 105, 2586–2591.

    Google Scholar 

  185. Bensaid, F.; Thillaye du Boullay, O.; Amgoune, A.; Pradel, C.; Harivardhan Reddy, L.; Didier, E.; Sablé, S.; Louit, G.; Bazile, D.; Bourissou, D. Y–shaped mPEG–PLA cabazitaxel conjugates: Well–controlled synthesis by organocatalytic approach and self–assembly into interface drug–loaded core–corona nanoparticles. Biomacromolecules 2013, 14, 1189–1198.

    Google Scholar 

  186. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli–responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.

    Google Scholar 

  187. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli–responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Google Scholar 

  188. Miranda, D.; Lovell, J. F. Mechanisms of light–induced liposome permeabilization. Bioeng. Transl. Med. 2016, 1, 267–276.

    Google Scholar 

  189. Meng, F. H.; Hennink, W. E.; Zhong, Z. Y. Reductionsensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009, 30, 2180–2198.

    Google Scholar 

  190. Brülisauer, L.; Gauthier, M. A.; Leroux, J. C. Disulfidecontaining parenteral delivery systems and their redoxbiological fate. J. Control. Release 2014, 195, 147–154.

    Google Scholar 

  191. Han, X. X.; Gong, F. R.; Sun, J.; Li, Y. Q.; Liu, X. F.; Chen, D.; Liu, J. W.; Shen, Y. L. Glutathione–responsive core cross–linked micelles for controlled cabazitaxel delivery. J. Nanopart. Res. 2018, 20, 42.

    Google Scholar 

  192. Xue, P.; Liu, D.; Wang, J.; Zhang, N.; Zhou, J. H.; Li, L.; Guo, W. L.; Sun, M. C.; Han, X. F.; Wang, Y. J. Redoxsensitive citronellol–cabazitaxel conjugate: Maintained in vitro cytotoxicity and self–assembled as multifunctional nanomedicine. Bioconjugate Chem. 2016, 27, 1360–1372.

    Google Scholar 

  193. Engin, K.; Leeper, D. B.; Cater, J. R.; Thistlethwaite, A. J.; Tupchong, L.; McFarlane, J. D. Extracellular pH distribution in human tumours. Int. J. Hyperthermia 1995, 11, 211–216.

    Google Scholar 

  194. Van Sluis, R.; Bhujwalla, Z. M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J. P.; Gillies, R. J. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 1999, 41, 743–750.

    Google Scholar 

  195. Ojugo, A. S. E.; McSheehy, P. M. J.; McIntyre, D. J. O.; McCoy, C.; Stubbs, M.; Leach, M. O.; Judson, I. R.; Griffiths, J. R. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: A comparison of exogenous 19F and 31P probes. NMR Biomed. 1999, 12, 495–504.

    Google Scholar 

  196. Parhizkar, E.; Ahmadi, F.; Daneshamouz, S.; Mohammadi–Samani, S.; Sakhteman, A.; Parhizgar, G. Synthesis and characterization of water–soluble conjugates of cabazitaxel hemiesters–dextran. Anticancer Agents Med. Chem. 2017, 17, 1555–1562.

    Google Scholar 

  197. Shao, Y. J.; Li, S.; Tian, B.; Su, L. L.; Zhang, C. G.; Wang, Y. Q.; Tang, X.; Wang, Y. Evaluation of the stability and pharmacokinetics of cabazitaxel–loaded intravenous lipid microspheres: Beneficial effect of cholesterol. Eur. J. Lipid Sci. Technol. 2015, 117, 460–470.

    Google Scholar 

  198. Zhou, G. M.; Jin, X. Y.; Zhu, P.; Yao, J.; Zhang, Y. X.; Teng, L. S.; Lee, R. J.; Zhang, X. M.; Hong, W. Human serum albumin nanoparticles as a novel delivery system for cabazitaxel. Anticancer Res. 2016, 36, 1649–1656.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (No. DP5OD017898). We thank Dr. Michael Smolinski for valuable discussion and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Lovell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Straubinger, R.M. & Lovell, J.F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res. 11, 5193–5218 (2018). https://doi.org/10.1007/s12274-018-2171-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2171-0

Keywords

Navigation