Skip to main content
Log in

A novel tumor-targeting treatment strategy uses energy restriction via co-delivery of albendazole and nanosilver

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although nanotechnology has been rapidly developed and applied in tumor targeting, the outcome of chemotherapy remains greatly restricted by the toxicity of cytotoxic drugs in normal tissues and cells. Therefore, the development of alternative delivery systems, with few side effects in normal cells, has attracted increasing attention. Energy restriction is a novel and promising approach to cancer treatment, which can restrict tumor growth via inhibition of cellular energy metabolism. In this study, a novel tumor targeting system, based on folate-conjugated bovine serum albumin (BSA), was developed to co-deliver albendazole and nanosilver simultaneously, to restrain the energy metabolism of tumor cells. This nanosystem showed stronger anti-tumor efficacy than those using nanoparticles without folic acid modification, nanosilver, or albendazole, both in vitro and in vivo. This nanosystem depleted cellular ATP via direct inhibition of glycolytic enzymes and mitochondrial damage, resulting in inhibition of proliferation, cell-cycle arrest, and apoptosis of tumor cells. The enhanced anti-tumor activity contributed to the tumor-targeting ability of this system, resulting in specific energy inhibition in tumor cells. Toxicity evaluation was performed to confirm the safety of this system. This nanosystem provides an efficient and safe strategy for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2014, 136, E359–E386.

    Article  Google Scholar 

  2. Sun, C. C.; Bodurka, D. C.; Weaver C. B.; Rasu, R.; Wolf, J. K.; Bevers, M. W.; Smith, J. A.; Wharton, J. T.; Rubenstein, E. B. Rankings and symptom assessments of side effects from chemotherapy: Insights from experienced patients with ovarian cancer. Supportive Care Cancer 2005, 13, 219–227.

    Article  Google Scholar 

  3. Yoo, H. J.; Ahn, S. H.; Kim, S. B.; Kim, W. K.; Han, O. S. Efficacy of progressive muscle relaxation training and guided imagery in reducing chemotherapy side effects in patients with breast cancer and in improving their quality of life. Supportive Care Cancer 2005, 13, 826–833.

    Article  Google Scholar 

  4. Chen, G.; Feng, J.; Zhou, C.; Wu, Y. L.; Liu, X. Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S. et al. Quality of life (QoL) analyses from OPTIMAL (CTONG-0802), a phase iii, randomised, open-label study of first-line erlotinib versus chemotherapy in patients with advanced EGFR mutationpositive non-small-cell lung cancer (NSCLC). Ann. Oncol. 2013, 24, 1615–1622.

    Article  Google Scholar 

  5. Hsu, P. P.; Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134, 703–707.

    Article  Google Scholar 

  6. Elstrom, R. L.; Bauer, D. E.; Buzzai, M.; Karnauskas, R.; Harris, M. H.; Plas, D. R.; Zhuang, H.; Cinalli, R. M.; Alavi, A.; Rudin, C. M. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64, 3892–3899.

    Article  Google Scholar 

  7. Deberardinis, R. J.; Lum, J. J.; Hatzivassiliou, G.; Thompson, C. B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7, 11–20.

    Article  Google Scholar 

  8. Eguchi, Y.; Shimizu, S.; Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997, 57, 1835–1840.

    Google Scholar 

  9. Sweet, S.; Singh, G. Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints. Cancer Res. 1995, 55, 5164–5167.

    Google Scholar 

  10. Woodward, G. E.; Hudson, M. T. The effect of 2-deoxy-Dglucose on glycolysis and respiration of tumor and normal tissues. Cancer Res. 1954, 14, 599–605.

    Google Scholar 

  11. Vander Heiden, M. G. Targeting cancer metabolism: A therapeutic window opens. Nature Rev. Drug Discov. 2011, 10, 671–684.

    Article  Google Scholar 

  12. Horton, J. Albendazole: A broad spectrum anthelminthic for treatment of individuals and populations. Curr. Opin. Infect. Dis. 2002, 15, 599–608.

    Article  Google Scholar 

  13. Li, Q. Z.; Hao, Y. H.; Gao, X. J.; Gao, W. X.; Zhao, B. The target of benzimidazole carbamate against cysticerci cellulosae. Agr. Sci. China 2007, 6, 1009–1017.

    Article  Google Scholar 

  14. Xiao, S. H.; Feng, J. J.; Guo, H. F.; Jiao, P. Y.; Yao, M. Y.; Jiao, W. Effects of mebendazole, albendazole, and praziquantel on fumarate hydratase, pyruvate kinase, and phosphoenolpyruvate carboxykinase of Echinococcus granulosus cyst wall harbored in mice. Acta Pharmacol. Sin. 1994, 15, 69–72.

    Google Scholar 

  15. Fang, Z.; Jin, D.; Wang, J. J. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells. Mol. Cell. Biochem. 2017, 428, 171–178.

    Article  Google Scholar 

  16. Pourgholami, M. H.; Cai, Z. Y.; Wang, L. S.; Badar, S.; Links, M.; Morris, D. L. Inhibition of cell proliferation, vascular endothelial growth factor and tumor growth by albendazole. Cancer Invest. 2009, 27, 171–177.

    Article  Google Scholar 

  17. Pourgholami, M. H.; Zhao, Y. C.; Badar, S.; Wangoo, K.; Poruchynsky, M. S.; Morris, D. L. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole. BMC Cancer 2010, 10, 143.

    Article  Google Scholar 

  18. Pourgholami, M. H.; Khachigian, L. M.; Fahmy, R. G.; Badar, S.; Wang, L. S.; Chu, S. W. L.; Morris, D. L. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in rop model of angiogenesis. Biochem. Biophys. Res. Common. 2010, 397, 729–734.

    Article  Google Scholar 

  19. Ishiguro, T.; Ishiguro, R.; Ishiguro, M.; Iwai, S. Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: In vivo experiments and a case report. Hepatogastroenterology 2012, 59, 994–996.

    Google Scholar 

  20. Fantin, V. R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9, 425–434.

    Article  Google Scholar 

  21. Gottschalk, S.; Anderson, N.; Hainz, C.; Eckhardt, S. G.; Serkova, N. J. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin. Cancer Res. 2004, 10, 6661–6668.

    Article  Google Scholar 

  22. Li, J.; Spletter, M. L.; Johnson, D. A.; Wright, L. S.; Svendsen, C. N.; Johnson, J. A. Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J. Neurochem. 2005, 92, 462–476.

    Article  Google Scholar 

  23. Derse, P. H.; Strong, F. M. Toxicity of antimycin to fish. Nature 1963, 200, 600–601.

    Article  Google Scholar 

  24. Liang, J. M.; Zeng, F.; Zhang, M.; Pan, Z. Z.; Chen, Y. Z.; Zeng, Y. E.; Xu, Y.; Xu, Q.; Huang, Y. Z. Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Adv. 2015, 5, 43733–43740.

    Article  Google Scholar 

  25. Khandelia, R.; Jaiswal, A.; Ghosh, S. S.; Chattopadhyay, A. Gold nanoparticle-protein agglomerates as versatile nanocarriers for drug delivery. Small 2013, 9, 3494–3505.

    Article  Google Scholar 

  26. Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 2016, 9, 2424–2432.

    Article  Google Scholar 

  27. Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284–293.

    Article  Google Scholar 

  28. Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.

    Article  Google Scholar 

  29. Meng, H.; Chen, J. Y.; Mi, L.; Wang, P. N.; Ge, M. Y.; Yue, Y.; Dai, N. Conjugates of folic acids with BSA-coated quantum dots for cancer cell targeting and imaging by single-photon and two-photon excitation. J. Biol. Inorg. Chem. 2011, 16, 117–123.

    Article  Google Scholar 

  30. Noorani, L.; Stenzel, M.; Liang, R.; Pourgholami, M. H.; Morris, D. L. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J. Nanobiotechnol. 2015, 13, 25.

    Article  Google Scholar 

  31. Potara, M.; Boca, S.; Licarete, E.; Damert, A.; Alupei, M. C.; Chiriac, M. T.; Popescu, O.; Schmidt, U.; Astilean, S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular sers sensing and imaging. Nanoscale 2013, 5, 6013–6022.

    Article  Google Scholar 

  32. Zeng, L. Y.; Luo, L. J.; Pan, Y. W.; Luo, S.; Lu, G. M.; Wu, A. G. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale 2015, 7, 8946–8954.

    Article  Google Scholar 

  33. Zhu, Y.; Tong, W. J.; Gao, C. Y.; Möhwald, H. Fabrication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking. J. Mater. Chem. 2008, 18, 1153–1158.

    Article  Google Scholar 

  34. Matias, R.; Ribeiro, P. R. S.; Sarraguça, M. C.; Lopes, J. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal. Methods 2014, 6, 3065–3071.

    Article  Google Scholar 

  35. Manjunath, S.; Satish Rao, B. S.; Satyamoorthy, K.; Mahato, K. Laser induced autofluorescence in the monitoring of β-mercaptoethanol mediated photo induced proton coupled electron transfer in proteins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 607–614.

    Article  Google Scholar 

  36. Wu, A. Z.; Lin, C. Z.; Zhai, Y. J.; Zhuo, J. L.; Zhu, C. C. Investigation of the interaction between two phenylethanoid glycosides and bovine serum albumin by spectroscopic methods. J. Pharm. Anal. 2013, 3, 61–65.

    Article  Google Scholar 

  37. He, Q. J.; Shi, J. L. Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 2011, 21, 5845–5855.

    Article  Google Scholar 

  38. Hatzivassiliou, G.; Zhao, F. P.; Bauer, D. E.; Andreadis, C.; Shaw, A. N.; Dhanak, D.; Hingorani, S. R.; Tuveson, D. A.; Thompson, C. B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005, 8, 311–321.

    Article  Google Scholar 

  39. Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (review). Oncol. Lett. 2012, 4, 1151–1157.

    Article  Google Scholar 

  40. Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: Cancer’s achilles’ heel. Cancer Cell 2008, 13, 472–482.

    Article  Google Scholar 

  41. Li, M.; Su, Y. L.; Chen, Y. G.; Wan, R.; Zheng, X.; Liu, K. The effects of fulvic acid on microbial denitrification: Promotion of NADH generation, electron transfer, and consumption. Appl. Microbiol. Biot. 2016, 100, 5607–5618.

    Article  Google Scholar 

  42. Roberts, D. J.; Tan-Sah, V. P.; Ding, E. Y.; Smith, J. M.; Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell 2014, 53, 521–533.

    Article  Google Scholar 

  43. Jurica, M. S.; Mesecar, A.; Heath, P. J.; Shi, W. X.; Nowak, T.; Stoddard, B. L. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 1998, 6, 195–210.

    Article  Google Scholar 

  44. Zhao, Y.; Butler, E. B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013, 4, e532.

    Article  Google Scholar 

  45. He, Y. Y.; Liu, N. N.; Luo, Z. B.; Li, S. L. Effect of albendazole on glycolysis of cisplatin-resistant ovarian cancer cells. J. Third Mil. Med. Univ. 2012, 34, 1426–1429.

    Google Scholar 

  46. Jouaville, L. S.; Pinton, P.; Bastianutto, C.; Rutter, G. A.; Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA 1999, 96, 13807–13812.

    Article  Google Scholar 

  47. Green, D. R.; Reed, J. C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312.

    Article  Google Scholar 

  48. Bressan, E.; Ferroni, L.; Gardin, C.; Rigo, C.; Stocchero, M.; Vindigni, V.; Cairns, W.; Zavan, B. Silver nanoparticles and mitochondrial interaction. Int. J. Dent. 2013, 2013, 312747.

    Article  Google Scholar 

  49. Costa, C. S.; Ronconi, J. V.; Daufenbach, J. F.; Gonçalves, C. L.; Rezin, G. T.; Streck, E. L.; da Silva Paula, M. M. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol. Cell. Biochem. 2010, 342, 51–56.

    Article  Google Scholar 

  50. Arora, S.; Jain, J.; Rajwade, J.; Paknikar, K. M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol. Lett. 2008, 179, 93–100.

    Article  Google Scholar 

  51. Arora, S.; Jain, J.; Rajwade, J. M.; Paknikar, K. M. Silver nanoparticles induced cellular responses. Nanotoxicology 2008, 2, S75.

    Google Scholar 

  52. Roederer, M. Interpretation of cellular proliferation data: Avoid the panglossian. Cytometry. A 2011, 79, 95–101.

    Article  Google Scholar 

  53. Frydman, B.; Bhattacharya, S.; Sarkar, A.; Drandarov, K.; Chesnov, S.; Guggisberg, A.; Popaj, K.; Sergeyev, S.; Yurdakul, A.; Hesse, M. et al. Macrocyclic polyamines deplete cellular ATP levels and inhibit cell growth in human prostate cancer cells. J. Med. Chem. 2004, 47, 1051–1059.

    Article  Google Scholar 

  54. Sherr, C. J. Cancer cell cycles. Science 1996, 274, 1672–1677.

    Article  Google Scholar 

  55. Mandal, S.; Guptan, P.; Owusu-Ansah, E.; Banerjee, U. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in drosophila. Dev. Cell 2005, 9, 843–854.

    Article  Google Scholar 

  56. Evan, G. I.; Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 2001, 411, 342–348.

    Article  Google Scholar 

  57. Richter, C.; Schweizer, M.; Cossarizza, A.; Franceschi, C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996, 378, 107–110.

    Article  Google Scholar 

  58. Pourgholami, M. H.; Woon, L.; Almajd, R.; Akhter, J.; Bowery, P.; Morris, D. L. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett. 2001, 165, 43–49.

    Article  Google Scholar 

  59. Min, K. K.; Kim, S.; Park, S. J.; Lee, H.; Kim, T. S.; Jung, S. Y.; Kang, H. G.; Eom, H. S.; Kong, S. Y. Abstract 1702: High-throughput cell-based screening of drug library identifies albendazole as a sensitizer with combination of bortezomib for treatment multiple myeloma. Cancer Res. 2014, 74, 1702–1702.

    Article  Google Scholar 

  60. Guo, D. W.; Zhu, L. Y.; Huang, Z. H.; Zhou, H. X.; Ge, Y.; Ma, W. J.; Wu, J.; Zhang, X. Y.; Zhou, X. F.; Zhang, Y. et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013, 34, 7884–7894.

    Article  Google Scholar 

  61. Lee, Y. H.; Cheng, F. Y.; Chiu, H. W.; Tsai, J. C.; Fang, C. Y.; Chen, C. W.; Wang, Y. J. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials. 2014, 35, 4706–4715.

    Article  Google Scholar 

  62. Yin, N. Y.; Liu, Q.; Liu, J. Y.; He, B.; Cui, L.; Li, Z. N.; Yun, Z. J.; Qu, G. B.; Liu, S. J.; Zhou, Q. F. et al. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 2013, 9, 1831–1841.

    Article  Google Scholar 

  63. Desagher, S.; Martinou, J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000, 10, 369–377.

    Article  Google Scholar 

  64. Noorani, L.; Pourgholami, M. H.; Liang, M.; Morris, D. L.; Stenzel, M. Albendazole loaded albumin nanoparticles for ovarian cancer therapy. Eur. J. Nanomed. 2014, 6, 227–236.

    Article  Google Scholar 

  65. Du, C. L.; Deng, D. W.; Shan, L. L.; Wan, S.; Cao, J.; Tian, J. M.; Achilefu, S.; Gu, Y. Q. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials 2013, 34, 3087–3097.

    Article  Google Scholar 

  66. Liu, J. H.; Zhao, Y. X.; Guo, Q. Q.; Wang, Z.; Wang, H. Y.; Yang, Y. X.; Huang, Y. Z. TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials 2012, 33, 6155–6161.

    Article  Google Scholar 

  67. Wang, A. T.; Liang, D. S.; Liu, Y. J.; Qi, X. R. Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 2015, 53, 160–172.

    Article  Google Scholar 

  68. She, Z. N.; Zhang, T.; Wang, X. L.; Li, X.; Song, Y. Z.; Cheng, X. B.; Huang, Z. J.; Deng, Y. H. The anticancer efficacy of pixantrone-loaded liposomes decorated with sialic acid–octadecylamine conjugate. Biomaterials 2014, 35, 5216–5225.

    Article  Google Scholar 

  69. Dutta, A. K.; Phadke, M. A.; Bagade, A. C.; Joshi, V.; Gazder, A.; Biswas, T. K.; Gill, H. H.; Jagota, S. C. A randomised multicentre study to compare the safety and efficacy of albendazole and metronidazole in the treatment of giardiasis in children. Indian J. Pediatr. 1994, 61, 689–693.

    Article  Google Scholar 

  70. Horton, R. J. Albendazole in treatment of human cystic echinococcosis: 12 years of experience. Acta Trop. 1997, 64, 79–93.

    Article  Google Scholar 

  71. Alarcon, E. I.; Udekwu, K.; Skog, M.; Pacioni, N. L.; Stamplecoskie, K. G.; González-Béjar, M.; Polisetti, N.; Wickham, A.; Richter-Dahlfors, A.; Griffith, M. et al. The biocompatibility and antibacterial properties of collagenstabilized, photochemically prepared silver nanoparticles. Biomaterials 2012, 33, 4947–4956.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for financial support from the National Natural Science Foundation of China (Nos. 81690263 and 81361140344), the National Basic Research Program of China (No. 2013CB932500) and the Development Project of Shanghai Peak Disciplines–Integrated Medicine (No. 20150407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weigen Lu or Jianxin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, R., He, Y. et al. A novel tumor-targeting treatment strategy uses energy restriction via co-delivery of albendazole and nanosilver. Nano Res. 11, 4507–4523 (2018). https://doi.org/10.1007/s12274-018-2032-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2032-x

Keywords

Navigation