Skip to main content
Log in

Nanomaterial-assisted sensitization of oncotherapy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Globally, cancer is growing at an alarming pace, which calls for development of more efficient cancer treatments. Conventional chemotherapy and radiotherapy have become crucial first-line clinical treatments for cancer. However, along with their wide usage, limited therapeutic effects, severe adverse reactions, unaffordable costs, and complicated operations lead to failures of these treatments. Moreover, the emergence of multidrug resistance inhibits the longtime usage of chemotherapeutics. One of the major causes of treatment failure is the insufficient sensitivity of cancer cells to therapeutic drugs or treatments. With the rigorous development of nanotechnology, tailored nanoparticles can efficiently sensitize malignant cells by inducing intracellular structural and functional changes, which could affect vital intracellular processes such as metabolism, signal conduction, proliferation, cell death as well as intracellular drug delivery. Here, we review recent advances in nanomaterial-assisted sensitization of oncotherapy, and challenges and strategies in the development of nanomedical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Global health observatory data repository. 2011. Number of deaths (World) by cause [Online]. http://apps.who.int/gho/data/node.main.CODWORLD?lang=en. (accessed Oct 25, 2017).

    Google Scholar 

  2. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, 359–386.

    Article  CAS  Google Scholar 

  3. Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108.

    Article  Google Scholar 

  4. Steliarova-Foucher, E.; Colombet, M.; Ries, L. A. G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H. Y.; Stiller, C. A.; Bouzbid, S. et al. International incidence of childhood cancer, 2001-10: A population-based registry study. Lancet Oncol. 2017, 18, 719–731.

    Article  Google Scholar 

  5. Chen, L. M.; Sun, J. H.; Yang, X. M. Radiofrequency ablation-combined multimodel therapies for hepatocellular carcinoma: Current status. Cancer Lett. 2016, 370, 78–84.

    Article  CAS  Google Scholar 

  6. Ribas, A. Releasing the brakes on cancer immunotherapy. N. Engl. J. Med. 2015, 373, 1490–1492.

    Article  Google Scholar 

  7. Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

    Article  CAS  Google Scholar 

  8. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

    Article  CAS  Google Scholar 

  9. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem, Int. Ed. 2014, 53, 12320–12364.

    CAS  Google Scholar 

  10. Lazarovits, J.; Chen, Y. Y.; Sykes, E. A.; Chan, W. C. W. Nanoparticle-blood interactions: The implications on solid tumour targeting. Chem. Commun. 2015, 51, 2756–2767.

    Article  CAS  Google Scholar 

  11. Zeng, L. L.; Gupta, P.; Chen, Y. L.; Wang, E. J.; Ji, L. N.; Chao, H.; Chen, Z. S. The development of anticancer ruthenium(II) complexes: From single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017, 46, 5771–5804.

    Article  CAS  Google Scholar 

  12. Luqmani, Y. A. Mechanisms of drug resistance in cancer chemotherapy. Med. Prin. Pract. 2005, 14, 35–48.

    Article  Google Scholar 

  13. Ma, N. N.; Wu, F. G.; Zhang, X. D.; Jiang, Y. W.; Jia, H. R.; Wang, H. Y.; Li, Y. H.; Liu, P. D.; Gu, N.; Chen, Z. Shapedependent radiosensitization effect of gold nanostructures in cancer radiotherapy: Comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces 2017, 9, 13037–13048.

    Article  CAS  Google Scholar 

  14. Bedard, P. L.; Hansen, A. R.; Ratain, M. J.; Siu, L. L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364.

    Article  CAS  Google Scholar 

  15. Mujokoro, B.; Adabi, M.; Sadroddiny, E.; Adabi, M.; Khosravani, M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review. Mat. Sci. Eng. C 2016, 69, 1092–1102.

    Article  CAS  Google Scholar 

  16. Ramu, A.; Glaubiger, D.; Fuks, Z. Reversal of acquired resistance to doxorubicin in p388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res. 1984, 44, 4392–4395.

    CAS  Google Scholar 

  17. Vinod, B. S.; Maliekal, T. T.; Anto, R. J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid. Redox Signal. 2013, 18, 1307–1348.

    Article  CAS  Google Scholar 

  18. Fletcher, D. A.; Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492.

    Article  CAS  Google Scholar 

  19. Pawlak, G.; Helfman, D. M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr. Opin. Genet. Dev. 2001, 11, 41–47.

    Article  CAS  Google Scholar 

  20. Zhang, Z.; Yang, M.; Chen, R.; Su, W.; Li, P.; Chen, S.; Chen, Z.; Chen, A.; Li, S.; Hu, C. IBP regulates epithelial-tomesenchymal transition and the motility of breast cancer cells via rac1, rhoa and cdc42 signaling pathways. Oncogene 2014, 33, 3374–3382.

    Article  CAS  Google Scholar 

  21. Tavares, S.; Vieira, A. F.; Taubenberger, A. V.; Araujo, M.; Martins, N. P.; Bras-Pereira, C.; Polonia, A.; Herbig, M.; Barreto, C.; Otto, O. et al. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 2017, 8, 15237.

    Article  CAS  Google Scholar 

  22. Zhu, J. Q.; Xu, M.; Gao, M.; Zhang, Z. H.; Xu, Y.; Xia, T.; Liu, S. J. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 2017, 11, 2637–2651.

    Article  CAS  Google Scholar 

  23. Overgaard, J. Influence of extracellular pH on the viability and morphology of tumor cells exposed to hyperthermia. J. Natl. Cancer Inst. 1976, 56, 1243–1250.

    Article  CAS  Google Scholar 

  24. Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 2002, 43, 33–56.

    Article  Google Scholar 

  25. Cherukuri, P.; Glazer, E. S.; Curley, S. A. Targeted hyperthermia using metal nanoparticles. Adv. Drug. Deliv. Rev. 2010, 62, 339–345.

    Article  CAS  Google Scholar 

  26. Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132.

    Article  CAS  Google Scholar 

  27. Ali, M. R. K.; Wu, Y.; Tang, Y.; Xiao, H. P.; Chen, K. C.; Han, T. G.; Fang, N.; Wu, R. H.; El-Sayed, M. A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc. Natl. Acad. Sci. USA 2017, 114, e5655–E5663.

    Article  CAS  Google Scholar 

  28. Zhao, R. F.; Han, X. X.; Li, Y. Y.; Wang, H.; Ji, T. J.; Zhao, Y. L.; Nie, G. J. Photothermal effect enhanced cascade-targeting strategy for improved pancreatic cancer therapy by gold nanoshell@mesoporous silica nanorod. ACS Nano 2017, 11, 8103–8113.

    Article  CAS  Google Scholar 

  29. Sanz, B.; Calatayud, M. P.; Torres, T. E.; Fanarraga, M. L.; Ibarra, M. R.; Goya, G. F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials 2017, 114, 62–70.

    Article  CAS  Google Scholar 

  30. Yoshimori, T. Autophagy: A regulated bulk degradation process inside cells. Biochem. Biophys. Res. Commun. 2004, 313, 453–458.

    Article  CAS  Google Scholar 

  31. Klionsky, D. J. Autophagy: From phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 2007, 8, 931–937.

    Article  CAS  Google Scholar 

  32. Kumar, D.; Shankar, S.; Srivastava, R. K. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via Pl3K/Akt/mTOR signaling pathway. Cancer Lett. 2014, 343, 179–189.

    Article  CAS  Google Scholar 

  33. Li, T. L.; Su, L.; Zhong, N.; Hao, X. X.; Zhong, D. S.; Singhal, S.; Liu, X. G. Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy 2013, 9, 1057–1068.

    Article  CAS  Google Scholar 

  34. Yang, A. N.; Rajeshkumar, N. V.; Wang, X. X.; Yabuuchi, S.; Alexander, B. M.; Chu, G. C.; Von Hoff, D. D.; Maitra, A.; Kimmelman, A. C. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. CancerDiscov. 2014, 4, 905–913.

    CAS  Google Scholar 

  35. Zhang, Q. Y.; Linqing, W. U.; Zhang, T.; Han, Y. F.; Lin, X. Autophagy-mediated hmgb1 release promotes gastric cancer cell survival via RAGE activation of extracellular signalregulated kinases 1/2. Oncol. Rep. 2015, 33, 1630–1638.

    Article  CAS  Google Scholar 

  36. Joshi, S.; Kumar, S.; Ponnusamy, M. P.; Batra, S. K. Hypoxia-induced oxidative stress promotes MUC4 degradation via autophagy to enhance pancreatic cancer cells survival. Oncogene 2016, 35, 5882–5892.

    Article  CAS  Google Scholar 

  37. Guo, S. J.; Dong, S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

    Article  CAS  Google Scholar 

  38. Jiang, H. J. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small 2011, 7, 2413–2427.

    CAS  Google Scholar 

  39. Zhang, Q.; Yang, W. J.; Man, N.; Zheng, F.; Shen, Y. Y.; Sun, K. J.; Li, Y; Wen, L.-P. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy 2009, 5, 1107–1117.

    Article  CAS  Google Scholar 

  40. Wei, P. F.; Zhang, L.; Lu, Y.; Man, N.; Wen, L. P. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010, 21, 495101.

    Article  CAS  Google Scholar 

  41. Franskevych, D. V.; Grynyuk, I. I.; Prylutska, S. V; Matyshevska, O. P. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60) in normal and transformed lymphoid cells. Ukrain. Biochem. J. 2016, 88, 44–50.

    Article  CAS  Google Scholar 

  42. Chen, G. Y.; Meng, C. L.; Lin, K. C.; Tuan, H. Y.; Yang, H. J.; Chen, C. L.; Li, K. C.; Chiang, C. S.; Hu, Y C. Graphene oxide as a chemosensitizer: Diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials 2015, 40, 12–22.

    Article  CAS  Google Scholar 

  43. Yang, K.; Lu, Y.; Xie, F.; Zou, H.; Fan, X.; Li, B.; Li, W.; Zhang, W.; Mei, L.; Feng, S. S. et al. Cationic liposomes induce cell necrosis through lysosomal dysfunction and late- 15 stage autophagic flux inhibition. Nanomedicine 2016, 11, 3117–3137.

    Article  CAS  Google Scholar 

  44. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

    Article  CAS  Google Scholar 

  45. Ishitsuka, A.; Fujine, E.; Mizutani, Y.; Tawada, C.; Kanoh, H.; Banno, Y.; Seishima, M. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. Int. J. Mol. Med. 2014, 34, 1169–1174.

    Article  CAS  Google Scholar 

  46. Wang, Q.; Alshaker, H.; Bohler, T.; Srivats, S.; Chao, Y. M.; Cooper, C.; Pchejetski, D. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci. Rep. 2017, 7, 5901.

    Article  CAS  Google Scholar 

  47. Wink, D. A.; Miranda, K. M.; Espey, M. G.; Pluta, R. M.; Hewett, S. J.; Colton, C.; Vitek, M.; Feelisch, M.; Grisham, M. B. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox. Sign. 2001, 3, 203–213.

    Article  CAS  Google Scholar 

  48. Zhang, X.; Tian, G.; Yin, W. Y.; Wang, L. M.; Zheng, X. P.; Yan, L.; Li, J. X.; Su, H. R.; Chen, C. Y.; Gu, Z. J. et al. Controllable generation of nitric oxide by near-infraredsensitized upconversion nanoparticles for tumor therapy. Adv. Funct. Mater. 2015, 25, 3049–3056.

    Article  CAS  Google Scholar 

  49. Fan, J.; He, Q. J.; Liu, Y.; Zhang, F. W.; Yang, X. Y.; Wang, Z.; Lu, N.; Fan, W. P.; Lin, L. S.; Niu, G. et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via no-enhanced chemosensitization. ACS Appl. Mater. Interfaces 2016, 8, 13804–13811.

    Article  CAS  Google Scholar 

  50. Guo, S. R.; Lv, L.; Shen, Y. Y.; Hu, Z. L.; He, Q. J.; Chen, X. Y. A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci. Rep. 2016, 6, 21459.

    Article  CAS  Google Scholar 

  51. Singh, M.; Bhatnagar, P.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K. C. Plga-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing ehrlich ascites carcinoma. Int. J. Nanomedicine 2015, 10, 6789–6809.

    Article  CAS  Google Scholar 

  52. Katiyar, S. S.; Muntimadugu, E.; Rafeeqi, T. A.; Domb, A. J.; Khan, W. Co-delivery of rapamycin-and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016, 23, 2608–2616.

    CAS  Google Scholar 

  53. Johnson, B. M.; Charman W. N.; Porter, C. J. H. Application of compartmental modeling to an examination of in vitro intestinal permeability data: Assessing the impact of tissue uptake, p-glycoprotein, and CYP3A. Drug Metab. Dispos. 2003, 31, 1151–1160.

    Article  CAS  Google Scholar 

  54. Zaki, N. M. Augmented cytotoxicity of hydroxycamptothecinloaded nanoparticles in lung and colon cancer cells by chemosensitizing pharmaceutical excipients. Drug Deliv. 2014, 21, 265–275.

    Article  CAS  Google Scholar 

  55. Matsunaga, S.; Asano, T.; Tsutsuda-Asano, A.; Fukunaga, Y. Indomethacin overcomes doxorubicin resistance with inhibiting multi-drug resistance protein 1 (MRP1). Cancer Chemother. Pharmacol. 2006, 58, 348–353.

    Article  CAS  Google Scholar 

  56. Ji, W.; Wang, B.; Fan, Q.; Xu, C.; He, Y.; Chen, Y. Chemosensitizing indomethacin-conjugated dextran-based micelles for effective delivery of paclitaxel in resistant breast cancer therapy. PLoS One 2017, 12, e180037.

    Google Scholar 

  57. Drinberg, V; Bitcover, R.; Rajchenbach, W.; Peer, D. Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Lett. 2014, 354, 290–298.

    Article  CAS  Google Scholar 

  58. Lee, E.; Oh, C.; Kim, I. S.; Kwon, I. C.; Kim, S. Co-delivery of chemosensitizing sirna and an anticancer agent via multiple monocomplexation-induced hydrophobic association. J. Control. Release 2015, 210, 105–114.

    Article  CAS  Google Scholar 

  59. Kim, S. S.; Rait, A.; Kim, E.; Pirollo, K. F.; Nishida, M.; Farkas, N.; Dagata, J. A.; Chang, E. H. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 2014, 8, 5494–5514.

    Article  CAS  Google Scholar 

  60. Khatri, N.; Rathi, M.; Baradia, D.; Misra, A. cRGD grafted sirna nano-constructs for chemosensitization of gemcitabine hydrochloride in lung cancer treatment. Pharm. Res. 2015, 32, 806–818.

    Article  CAS  Google Scholar 

  61. Caster, J. M.; Sethi, M.; Kowalczyk, S.; Wang, E.; Tian, X.; Nabeel Hyder, S.; Wagner, K. T.; Zhang, Y. A.; Kapadia, C.; Man Au, K. et al. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale 2015, 7, 2805–2811.

    Article  CAS  Google Scholar 

  62. Banerjee, S.; Sahoo, A. K.; Chattopadhyay, A.; Ghosh, S. S. Chemosensitization of iKBa-overexpressing glioblastoma towards anti-cancer agents. RSCAdv. 2014, 4, 39257–39267.

    CAS  Google Scholar 

  63. Chen, Y.; Zheng, X. L.; Fang, D. L.; Yang, Y.; Zhang, J. K.; Li, H. L.; Xu, B.; Lei, Y.; Ren, K.; Song, X. R. Dual agent loaded plga nanoparticles enhanced antitumor activity in a multidrug-resistant breast tumor eenograft model. Int. J. Mol. Sci. 2014, 15, 2761–2772.

    Article  CAS  Google Scholar 

  64. Liu, C. W.; Lin, W. J. Using doxorubicin and sirna-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. J. Drug Target. 2013, 21, 776–786.

    Article  CAS  Google Scholar 

  65. Kouvaris, J. R.; Kouloulias, V. E.; Vlahos, L. J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist 2007, 12, 738–747.

    Article  CAS  Google Scholar 

  66. Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007, 19, 397–417.

    Article  CAS  Google Scholar 

  67. Klein, S.; Dell’Arciprete, M. L.; Wegmann, M.; Distel, L. V. R.; Neuhuber, W.; Gonzalez, M. C.; Kryschi, C. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Biophys. Res. Commun. 2013, 434, 217–222.

    Article  CAS  Google Scholar 

  68. Yong, Y.; Zhang, C. F.; Gu, Z. J.; Du, J. F.; Guo, Z.; Dong, X. H.; Xie, J. N.; Zhang, G. J.; Liu, X. F.; Zhao, Y. L. Polyoxometalate- based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano 2017, 11, 7164–7176.

    Article  CAS  Google Scholar 

  69. Yang, T. B.; Liang, Y.; Hou, J. Z.; Dou, Y. L.; Zhang, W. X. Metabolizable lanthanum-coordination nanoparticles as efficient radiosensitizers for solid tumor therapy. J. Mater. Chem. B 2017, 5, 5137–5144.

    Article  CAS  Google Scholar 

  70. Wu, H.; Lin, J.; Liu, P. D.; Huang, Z. H.; Zhao, P.; Jin, H. Z.; Ma, J.; Wen, L. P.; Gu, N. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials 2016, 101, 1–9.

    Article  CAS  Google Scholar 

  71. Du, F. Y.; Li, Z. R.; Zhang, L.; Zhang, M. M.; Gong, A. H.; Tan, Y. W.; Miao, J. W.; Gong, Y. H.; Sun, M. Z.; Ju, H. X. et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials 2017, 121, 109–120.

    Article  CAS  Google Scholar 

  72. Fang, X.; Wang, Y. L.; Ma, X. C.; Li, Y. Y.; Zhang, Z. L.; Xiao, Z. S.; Liu, L. J.; Gao, X. Y.; Liu, J. Mitochondriatargeting Au nanoclusters enhance radiosensitivity of cancer cells. J. Mater. Chem. B 2017, 5, 4190–4197.

    Article  CAS  Google Scholar 

  73. Hainfeld, J. F.; Slatkin, D. N.; Smilowitz, H. M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 2004, 49, N309–N315.

    Article  CAS  Google Scholar 

  74. Ma, N. N.; Liu, P. D.; He, N. Y.; Gu, N.; Wu, F. G.; Chen, Z. Action of gold nanospikes-based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy. ACS Appl. Mater. Interfaces 2017, 9, 31526–31542.

    Article  CAS  Google Scholar 

  75. Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Sizetuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 10, 2536–2548.

    Article  CAS  Google Scholar 

  76. Zhao, N.; Yang, Z. R.; Li, B. X.; Meng, J.; Shi, Z. L.; Li, P.; Fu, S. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int. J. Nanomedicine 2016, 11, 5595–5610.

    Article  CAS  Google Scholar 

  77. Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K. T.; Prise, K. M. Biological mechanisms of gold nanoparticle radiosensitization. CancerNanotechnol. 2017, 8, 2.

    Google Scholar 

  78. Hubbell, J. H.; Seltzer, S. M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version I.4) [Online]. http://www.nist.gov/pml/data/xraycoef (accessed Oct 25,2017).

    Google Scholar 

  79. Téoule, R. Radiation-induced DNA damage and its repair. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1987, 51, 573–589.

    Article  Google Scholar 

  80. Her, S.; Cui, L.; Bristow, R. G.; Allen, C. Dual action enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiat. Res. 2016, 185, 549–562.

    Article  CAS  Google Scholar 

  81. Yasui, H.; Takeuchi, R.; Nagane, M.; Meike, S.; Nakamura, Y.; Yamamori, T.; Ikenaka, Y.; Kon, Y.; Murotani, H.; Oishi, M. et al. Radiosensitization of tumor cells through endoplasmic reticulum stress induced by pegylated nanogel containing gold nanoparticles. Cancer Lett. 2014, 347, 151–158.

    Article  CAS  Google Scholar 

  82. Pawlik, T. M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. 2004, 59, 928–942.

    Article  Google Scholar 

  83. Liang, Y; Liu, J.; Liu, T.; Yang, X. S. Anti-C-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol. Lett. 2017, 14, 2254–2260.

    Article  Google Scholar 

  84. Saberi, A.; Shahbazi-Gahrouei, D.; Abbasian, M.; Fesharaki, M.; Baharlouei, A.; Arab-Bafrani, Z. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells. Int. J. Radiat. Biol. 2017, 93, 315–323.

    Article  CAS  Google Scholar 

  85. Jain, S.; Coulter, J. A.; Hounsell, A. R.; Butterworth, K. T.; McMahon, S. J.; Hyland, W. B.; Muir, M. F.; Dickson, G. R.; Prise, K. M.; Currell, F. J. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 531–539.

    Article  CAS  Google Scholar 

  86. Uz, M.; Bulmus, V.; Alsoy Altinkaya, S. Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle-cell interactions: An investigation on cell cycle, apoptosis, and DNA damage. Langmuir 2016, 32, 5997–6009.

    Article  CAS  Google Scholar 

  87. Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005, 7, 513–520.

    Article  CAS  Google Scholar 

  88. Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

    Article  CAS  Google Scholar 

  89. Vaupel, P. W.; Hockel, M. Oxygenation status of human tumors: A reappraisal using computerized pO2 histography. In: Tumor Oxygenation. Vaupel, P. W.; Kelleher, D. K.; Gunderoth, M., eds.; Fischer-Verlag: New York, 1995; pp219-232.

  90. Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989, 49, 6449–6465.

    CAS  Google Scholar 

  91. Gray, L. H.; Conger, A. D.; Ebert, M.; Hornsey, S.; Scott, O. C. A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 1953, 26, 638–648.

    Article  CAS  Google Scholar 

  92. Dowdy, A. H.; Bennett, L. R.; Chastain, S. M. Protective action of anoxic anoxia against total body roentgen irradiation of mammals. Radiology 1950, 55, 879–885.

    Article  CAS  Google Scholar 

  93. Cheng, N. N.; Starkewolf, Z.; Davidson, R. A.; Sharmah, A.; Lee, C. J.; Lien, J.; Guo, T. Chemical enhancement by nanomaterials under X-ray irradiation. J. Am. Chem. Soc. 2012, 134, 1950–1953.

    Article  CAS  Google Scholar 

  94. Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomed. Nanotechnol. 2011, 7, 604–614.

    Article  CAS  Google Scholar 

  95. Chang, Y. Z.; He, L. Z.; Li, Z. L.; Zeng, L. L.; Song, Z. H.; Li, P. H.; Chan, L.; You, Y. Y.; Yu, X. F.; Chu, P. K. et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano 2017, 11, 4848–4858.

    Article  CAS  Google Scholar 

  96. Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z.; Liu, Z.; Yang, K. Core-shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 2016, 9, 3267–3278.

    Article  CAS  Google Scholar 

  97. Wang, Y.; Roche, O.; Yan, M. S.; Finak, G.; Evans, A. J.; Metcalf, J. L.; Hast, B. E.; Hanna, S. C.; Wondergem, B.; Furge, K. A. et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat. Med. 2009, 15, 319–324.

    Article  CAS  Google Scholar 

  98. Cui, L.; Tse, K.; Zahedi, P.; Harding, S. M.; Zafarana, G.; Jaffray, D. A.; Bristow, R. G.; Allen, C. Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat. Res. 2014, 182, 475–488.

    Article  CAS  Google Scholar 

  99. Wang, C. M.; Sun, A.; Qiao, Y.; Zhang, P. P.; Ma, L. Y.; Su, M. Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. J. Mater. Chem B 2015, 3, 7372–7376.

    Article  CAS  Google Scholar 

  100. Guo, M. L.; Sun, Y. M.; Zhang, X.-D. Enhanced radiation therapy of gold nanoparticles in liver cancer. Appl. Sci. 2017, 7, 232.

    Article  CAS  Google Scholar 

  101. Lin, Y. T.; McMahon, S. J.; Paganetti, H.; Schuemann, J. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys. Med. Biol. 2015, 60, 4149–4168.

    Article  CAS  Google Scholar 

  102. Shi, M.; Paquette, B.; Thippayamontri, T.; Gendron, L.; Guerin, B.; Sanche, L. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles. Int. J. Nanomedicine 2016, 11, 5323–5333.

    Article  CAS  Google Scholar 

  103. Desoize, B.; Jardillier, J. C. Multicellular resistance: A paradigm for clinical resistance? Crit. Rev. Oncol. Hematol. 2000, 36, 193–207.

    Article  CAS  Google Scholar 

  104. Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234.

    Article  CAS  Google Scholar 

  105. Baguley, B. C. Multiple drug resistance mechanisms in cancer. Mol. Biotechnol. 2010, 46, 308–316.

    Article  CAS  Google Scholar 

  106. Gao, Z. B.; Zhang, L. N.; Sun, Y. J. Nanotechnology applied to overcome tumor drug resistance. J. Control. Release 2012, 162, 45–55.

    Article  CAS  Google Scholar 

  107. Singh, M. S.; Tammam, S. N.; Shetab Boushehri, M. A.; Lamprecht, A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol. Res. 2017, 126, 2–30.

    Article  CAS  Google Scholar 

  108. Li, S. Y; Li, C.; Jin, S. B.; Liu, J.; Xue, X. D.; Eltahan, A. S.; Sun, J. D.; Tan, J. J.; Dong, J. C.; Liang, X. J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials 2017, 144, 119–129.

    Article  CAS  Google Scholar 

  109. Liu, J.; Wei, T.; Zhao, J.; Huang, Y. Y.; Deng, H.; Kumar, A.; Wang, C. X.; Liang, Z. C.; Ma, X. W.; Liang, X. J. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016, 91, 44–56.

    Article  CAS  Google Scholar 

  110. Mercado-Lubo, R.; Zhang, Y. W.; Zhao, L.; Rossi, K.; Wu, X.; Zou, Y. K.; Castillo, A.; Leonard, J.; Bortell, R.; Greiner, D. L. et al. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat. Commun. 2016, 7, 12225.

    Article  CAS  Google Scholar 

  111. Tredan, O.; Galmarini, C. M.; Patel, K.; Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 2007, 99, 1441–1454.

    Article  CAS  Google Scholar 

  112. Cheng, W.; Nie, J. P.; Gao, N. S.; Liu, G.; Tao, W.; Xiao, X. J.; Jiang, L. J.; Liu, Z. G.; Zeng, X. W.; Mei, L. A multifunctional nanoplatform against multidrug resistant cancer: Merging the best of targeted chemo/gene/photothermal therapy. Adv. Funct. Mater. 2017, 27, 1704135.

    Article  CAS  Google Scholar 

  113. He, Y. J.; Xing, L.; Cui, P. F.; Zhang, J. L.; Zhu, Y.; Qiao, J. B.; Lyu, J. Y.; Zhang, M.; Luo, C. Q.; Zhou, Y X. et al. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials 2017, 113, 266–278.

    Article  CAS  Google Scholar 

  114. Tian, H.; Luo, Z. Y.; Liu, L. L.; Zheng, M. B.; Chen, Z.; Ma, A. Q.; Liang, R. J.; Han, Z. Q.; Lu, C. Y.; Cai, L. T. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater. 2017, 27, 1703197.

    Article  CAS  Google Scholar 

  115. Wang, A. T.; Liang, D. S.; Liu, Y. J.; Qi, X. R. Roles of ligand and tpgs of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 2015, 53, 160–172.

    Article  CAS  Google Scholar 

  116. Yuan, X.; Ji, W. X.; Chen, S.; Bao, Y. L.; Tan, S. W.; Lu, S.; Wu, K. M.; Qian, C. A novel paclitaxel-loaded poly(d,llactide-co-glycolide)-tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int. J. Nanomed. 2016, 11, 2119–2131.

    Article  CAS  Google Scholar 

  117. Yu, Y.; Wang, Z. H.; Zhang, L.; Yao, H. J.; Zhang, Y.; Li, R. J.; Ju, R. J.; Wang, X. X.; Zhou, J.; Li, N. et al. Mitochondrial targeting topotecan-loaded liposomes for treating drugresistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 2012, 33, 1808–1820.

    Article  CAS  Google Scholar 

  118. Tang, S.; Yin, Q.; Zhang, Z. W.; Gu, W. W.; Chen, L. L.; Yu, H. J.; Huang, Y. Z.; Chen, X. Z.; Xu, M. H.; Li, Y. P. Codelivery of doxorubicin and rna using pH-sensitive poly (Pamino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials 2014, 35, 6047–6059.

    Article  CAS  Google Scholar 

  119. Liu, J.; Ma, X. W.; Jin, S. B.; Xue, X. D.; Zhang, C. Q.; Wei, T.; Guo, W. S.; Liang, X. J. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol. Pharmaceutics 2016, 13, 1723–1730.

    Article  CAS  Google Scholar 

  120. Yao, C.; Wang, P. Y.; Li, X. M.; Hu, X. Y.; Hou, J. L.; Wang, L. Y.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341–9348.

    Article  CAS  Google Scholar 

  121. Lukianova-Hleb, E. Y.; Belyanin, A.; Kashinath, S.; Wu, X. W.; Lapotko, D. O. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 2012, 33, 1821–1826.

    Article  CAS  Google Scholar 

  122. Lukianova-Hleb, E. Y.; Kim, Y. S.; Belatsarkouski, I.; Gillenwater, A. M.; O’Neill, B. E.; Lapotko, D. O. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol. 2016, 11, 525–532.

    Article  CAS  Google Scholar 

  123. Lukianova-Hleb, E.; Hu, Y.; Latterini, L.; Tarpani, L.; Lee, S.; Drezek, R. A.; Hafner, J. H.; Lapotko, D. O. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACSNano 2010, 4, 2109–2123.

    CAS  Google Scholar 

  124. Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

    Article  CAS  Google Scholar 

  125. Sabharwal, S. S.; Schumacker, P. T. Mitochondrial ros in cancer: Initiators, amplifiers or an achilles’ heel? Nat. Rev. Cancer 2014, 14, 709–721.

    Article  CAS  Google Scholar 

  126. Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discovery 2010, 9, 447–464.

    Article  CAS  Google Scholar 

  127. Mallick, A.; More, P.; Syed, M. M. K.; Basu, S. Nanoparticlemediated mitochondrial damage induces apoptosis in cancer. ACS Appl. Mater Interfaces 2016, 8, 13218–13231.

    Article  CAS  Google Scholar 

  128. Tuguntaev, R. G.; Chen, S. Z.; Eltahan, A. S.; Mozhi, A.; Jin, S. B.; Zhang, J. C.; Li, C.; Wang, P. C.; Liang, X. J. P-gp inhibition and mitochondrial impairment by dual-functional nanostructure based on vitamin E derivatives to overcome multidrug resistance. ACS Appl. Mater. Interfaces 2017, 9, 16900–16912.

    Article  CAS  Google Scholar 

  129. Wang, D. F.; Rong, W. T.; Lu, Y; Hou, J.; Qi, S. S.; Xiao, Q.; Zhang, J.; You, J.; Yu, S. Q.; Xu, Q. TPGS/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells. ACS Appl. Mater. Interfaces 2015, 7, 3888–3901.

    Article  CAS  Google Scholar 

  130. Qiu, L. P.; Qiao, M. X.; Chen, Q.; Tian, C. M.; Long, M. M.; Wang, M. Y.; Li, Z.; Hu, W.; Li, G.; Cheng, L. et al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials 2014, 35, 9877–9887.

    Article  CAS  Google Scholar 

  131. Chen, W.-H.; Luo, G.-F.; Qiu, W.-X.; Lei, Q.; Liu, L.-H.; Zheng, D.-W.; Hong, S.; Cheng, S.-X.; Zhang, X.-Z. Tumortriggered drug release with tumor-targeted accumulation and elevated drug retention to overcome multidrug resistance. Chem. Mater. 2016, 28, 6742–6752.

    Article  CAS  Google Scholar 

  132. Zhang, R. X.; Li, L. Y.; Li, J.; Xu, Z. S.; Abbasi, A. Z.; Lin, L.; Amini, M. A.; Weng, W. Y.; Sun, Y.; Rauth, A. M. et al. Coordinating biointeraction and bioreaction of a nanocarrier material and an anticancer drug to overcome membrane rigidity and target mitochondria in multidrug-resistant cancer cells. Adv. Funct. Mater. 2017, 27, 1700804.

    Article  CAS  Google Scholar 

  133. Zhou, H. J.; Zhang, B.; Zheng, J. J.; Yu, M. F.; Zhou, T.; Zhao, K.; Jia, Y. X.; Gao, X. F.; Chen, C. Y.; Wei, T. T. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 2014, 35, 1597–1607.

    Article  CAS  Google Scholar 

  134. Chen, Y.; Wang, Z.; Xu, M.; Wang, X.; Liu, R.; Liu, Q.; Zhang, Z. H.; Xia, T.; Zhao, J. C.; Jiang, G. B. et al. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 2014, 8, 5813–5825.

    Article  CAS  Google Scholar 

  135. Mizutani, H.; Tada-Oikawa, S.; Hiraku, Y.; Kojima, M.; Kawanishi, S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005, 76, 1439–1453.

    Article  CAS  Google Scholar 

  136. Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther. 1987, 34, 155–166.

    Article  CAS  Google Scholar 

  137. Fahrenkrog, B.; Aebi, U. The nuclear pore complex: Nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 2003, 4, 757–766.

    Article  CAS  Google Scholar 

  138. Pante, N.; Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol. Biol. Cell 2002, 13, 425–434.

    Article  CAS  Google Scholar 

  139. Fan, Y. B.; Li, C. Y.; Li, F. Y.; Chen, D. Y. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery. Biomaterials 2016, 85, 30–39.

    Article  CAS  Google Scholar 

  140. Pan, L. M.; Liu, J. N.; Shi, J. L. Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 15952–15961.

    Article  CAS  Google Scholar 

  141. Maity, A. R.; Stepensky, D. Efficient subcellular targeting to the cell nucleus of quantum dots densely decorated with a nuclear localization sequence peptide. ACS Appl. Mater. Interfaces 2016, 8, 2001–2009.

    Article  CAS  Google Scholar 

  142. Lee, J. Y.; Lee, S. H.; Oh, M. H.; Kim, J. S.; Park, T. G.; Nam, Y. S. Prolonged gene silencing by sirna/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles. J. Control. Release 2012, 162, 407–413.

    Article  CAS  Google Scholar 

  143. Liu, C. X.; Zhao, G.; Liu, J.; Ma, N. C.; Chivukula, P.; Perelman, L.; Okada, K.; Chen, Z. Y.; Gough, D.; Yu, L. Novel biodegradable lipid nano complex for sirna delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J. Control. Release 2009, 140, 277–283.

    Article  CAS  Google Scholar 

  144. Chen, A. M.; Zhang, M.; Wei, D. G.; Stueber, D.; Taratula, O.; Minko, T.; He, H. X. Co-delivery of doxorubicin and Bcl-2 sirna by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug resistant cancer cells. Small 2009, 5, 2673–2677.

    Article  CAS  Google Scholar 

  145. Talekar, M.; Ouyang, Q.; Goldberg, M. S.; Amiji, M. M. Cosilencing of PKM-2 and MDR-1 sensitizes multidrug-resistant ovarian cancer cells to paclitaxel in a murine model of ovarian cancer. Mol. Cancer Ther. 2015, 14, 1521–1531.

    Article  CAS  Google Scholar 

  146. Zhang, T. B,; Guo, W. S.; Zhang, C. Q.; Yu, J.; Xu, J.; Li, S. Y.; Tian, J. H.; Wang, P. C.; Xing, J. F.; Liang, X. J. Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of sirna. ACS Appl. Mater. Interfaces 2017, 9, 16006–16014.

    Article  CAS  Google Scholar 

  147. Gu, X. G.; Kwok, R. T. K.; Lam, J. W. Y; Tang, B. Z. Aiegens for biological process monitoring and disease theranostics. Biomaterials 2017, 146, 115–135.

    Article  CAS  Google Scholar 

  148. Wang, Y. F.; Zhang, T. B.; Liang, X. J. Aggregation-induced emission: Lighting up cells, revealing life! Small 2016, 12, 6451–6477.

    Article  CAS  Google Scholar 

  149. Xue, X. D.; Jin, S. B.; Zhang, C. Q.; Yang, K. N.; Huo, S. D.; Chen, F.; Zou, G. Z.; Liang, X. J. Probe-inspired nano-prodrug with dual-color fluorogenic property reveals spatiotemporal drug release in living cells. ACS Nano 2015, 9, 2729–2739.

    Article  CAS  Google Scholar 

  150. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  CAS  Google Scholar 

  151. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

    Article  CAS  Google Scholar 

  152. Goel, S.; Ni, D. L.; Cai, W. B. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano 2017, 11, 5233–5237.

    Article  CAS  Google Scholar 

  153. He, Q. J.; Shi, J. L. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31600808), the Beijing Natural Science Foundation (No. 7164316). This work was also supported by the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS (No. NSKF201601). This work was supported in part by the Natural Science Foundation key projects (Nos. 31630027 and 31430031). The authors also appreciate the support of the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Ma or Xing-Jie Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, J., Ma, X. et al. Nanomaterial-assisted sensitization of oncotherapy. Nano Res. 11, 2932–2950 (2018). https://doi.org/10.1007/s12274-017-1961-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1961-0

Keywords

Navigation