Skip to main content
Log in

Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2), a typical transition-metal dichalcogenide, has attracted increasing attention in the field of nanomedicine because of its preeminent properties. In this study, magnetic resonance imaging (MRI)-guided chemo-photothermal therapy of human breast cancer xenograft in nude mice was demonstrated using a novel core/shell structure of Fe3O4@MoS2 nanocubes (IOMS NCs) via the integration of MoS2 (MS) film onto iron oxide (IO) nanocubes through a facile hydrothermal method. After the necessary PEGylation modification of the NCs for long-circulation purposes, such PEGylated NCs were further capped by 2-deoxy-D-glucose (2-DG), a non-metabolizable glucose analogue to increase the accumulation of the as-prepared NCs at the tumor site, as 2-DG molecules could be particularly attractive to resource-hungry cancer cells. Such 2-DG-modified PEGylated NCs (IOMS-PEG-2DG NCs) acted as drug-carriers for doxorubicin (DOX), which could be easily loaded within the NCs. The obtained IOMS-PEG(DOX)-2DG NCs exhibited a T2 relaxivity coefficient of 48.86 (mM)−1·s−1 and excellent photothermal performance. 24 h after intravenous injection of IOMS-PEG(DOX)-2DG NCs, the tumor site was clearly detected by enhanced T2-weighted MRI signal. Upon exposure to an NIR 808-nm laser for 5 min at a low power density of 0.5 W·cm−2, a marked temperature increase was noticed within the tumor site, and the tumor growth was efficiently inhibited by the chemo-photothermal effect. Therefore, our study highlights an excellent theranostic platform with great potential for targeted MRI-guided precise chemo-photothermal therapy of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanson, C.; Diou, O.; Thévenot, J.; Ibarboure, E.; Soum, A.; Brûlet, A.; Miraux, S.; Thiaudière, E.; Tan, S.; Brisson, A. et al. Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 2011, 5, 1122–1140.

    Article  Google Scholar 

  2. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

    Article  Google Scholar 

  3. Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, T. G.; Liu, Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv. Funct. Mater. 2013, 23, 3077–3086.

    Article  Google Scholar 

  4. Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

    Article  Google Scholar 

  5. Chen, Y.; Ai, K. L.; Liu, J. H.; Ren, X. Y.; Jiang, C. H.; Lu, L. H. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 2016, 77, 198–206.

    Article  Google Scholar 

  6. Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Del. Rev. 2012, 64, 1394–1416.

    Article  Google Scholar 

  7. Turkbey, B.; Brown, A. M.; Sankineni, S.; Wood, B. J.; Pinto, P. A.; Choyke, P. L. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J. Clin. 2016, 66, 326–336.

    Article  Google Scholar 

  8. Liu, Q. M.; Song, L. W.; Chen, S.; Gao, J. Y.; Zhao, P. Y.; Du, J. Z. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials 2017, 114, 23–33.

    Article  Google Scholar 

  9. Ni, D. L.; Zhang, J. W.; Bu, W. B.; Zhang, C.; Yao, Z. W.; Xing, H. Y.; Wang, J.; Duan, F.; Liu, Y. Y.; Fan, W. P. et al. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials 2016, 76, 218–225.

    Article  Google Scholar 

  10. Afshar-Oromieh, A.; Haberkorn, U.; Schlemmer, H. P.; Fenchel, M.; Eder, M.; Eisenhut, M.; Hadaschik, B. A.; Kopp-Schneider, A.; Röthke, M. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: Initial experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 887–897.

    Article  Google Scholar 

  11. Wu, J. B.; Shao, C.; Li, X. Y.; Shi, C. H.; Li, Q. L.; Hu, P. Z.; Chen, Y. T.; Dou, X. L.; Sahu, D.; Li, W. et al. Near- infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis. Biomaterials 2014, 35, 8175–8185.

    Article  Google Scholar 

  12. Kubiessa, K.; Purz, S.; Gawlitza, M.; Kühn, A.; Fuchs, J.; Steinhoff, K. G.; Boehm, A.; Sabri, O.; Kluge, R.; Kahn, T. et al. Initial clinical results of simultaneous 18F-FDG PET/MRI in comparison to 18F-FDG PET/CT in patients with head and neck cancer. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 639–648.

    Article  Google Scholar 

  13. Hu, J. Q.; Li, Q.; Zhan, J. H.; Jiao, Y.; Liu, Z. W.; Ringer, S. P.; Bando, Y.; Golberg, D. Unconventional ribbon-shaped β-Ga2O3 tubes with mobile Sn nanowire fillings. ACS Nano 2008, 2, 107–112.

    Article  Google Scholar 

  14. He, F.; Yang, G. X.; Yang, P. P.; Lv, R. C.; Li, C. X.; Dai, Y. L.; Gai, S. L.; Lin, J. A new single 808 nm NIR lightinduced imaging-guided multifunctional cancer therapy platform. Adv. Funct. Mater. 2015, 25, 3966–3976.

    Article  Google Scholar 

  15. Xie, X. J.; Gao, N. Y.; Deng, R. R.; Sun, Q.; Xu, Q. H.; Liu, X. G. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 2013, 135, 12608–12611.

    Article  Google Scholar 

  16. Yu, M. K.; Kim, D.; Lee, I. H.; So, J. S.; Jeong, Y. Y.; Jon, S. Image-guided prostate cancer therapy using aptamerfunctionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 2011, 7, 2241–2249.

    Article  Google Scholar 

  17. Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868–1872.

    Article  Google Scholar 

  18. Liang, X. L.; Li, Y. Y.; Li, X. D.; Jing, L. J.; Deng, Z. J.; Yue, X. L.; Li, C. H.; Dai, Z. F. PEGylated polypyrrole nanoparticles conjugating gadolinium chelates for dual-modal MRI/photoacoustic imaging guided photothermal therapy of cancer. Adv. Funct. Mater. 2015, 25, 1451–1462.

    Article  Google Scholar 

  19. Tromsdorf, U. I.; Bruns, O. T.; Salmen, S. C.; Beisiegel, U.; Weller, H. A highly effective, nontoxic T1 MRI contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009, 9, 4434–4440.

    Article  Google Scholar 

  20. Taylor, K. M. L.; Kim, J. S.; Rieter, W. J.; An, H. Y.; Lin, W. B. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 2008, 130, 2154–2155.

    Article  Google Scholar 

  21. Major, J. L.; Meade, T. J. Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc. Chem. Res. 2009, 42, 893–903.

    Article  Google Scholar 

  22. Bouchard, L. S.; Anwar, M. S.; Liu, G. L.; Hann, B.; Xie, Z. H.; Gray, J. W.; Wang, X.; Pines, A.; Chen, F. F. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc. Natl. Acad. Sci. USA 2009, 106, 4085–4089.

    Article  Google Scholar 

  23. Bulte, J. W. M.; Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004, 17, 484–499.

    Article  Google Scholar 

  24. Na, H. B.; Lee, J. H.; An, K.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. H.; Kim, S. T.; Kim, S. H.; Kim, S. W. et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew. Chem., Int. Ed. 2007, 119, 5493–5497.

    Article  Google Scholar 

  25. Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem., Int. Ed. 2008, 47, 5122–5135.

    Article  Google Scholar 

  26. Ye, F.; Laurent, S.; Fornara, A.; Astolfi, L.; Qin, J.; Roch, A.; Martini, A.; Toprak, M. S.; Muller, R. N.; Muhammed, M. Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol. Imaging 2012, 7, 460–468.

    Article  Google Scholar 

  27. Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem.Int. Ed. 2007, 119, 9439–9442.

    Article  Google Scholar 

  28. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  Google Scholar 

  29. Zhao, Z. H.; Zhou, Z. J.; Bao, J. F.; Wang, Z. Y.; Hu, J.; Chi, X. Q.; Ni, K. Y.; Wang, R. F.; Chen, X. Y.; Chen, Z. et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 2013, 4, 2266–2274.

    Google Scholar 

  30. Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.

    Article  Google Scholar 

  31. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

    Article  Google Scholar 

  32. Maeda, H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the epr effect for tumor-selective drug targeting. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 53–71.

    Article  Google Scholar 

  33. Bertrand, N.; Wu, J.; Xu, X. Y.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25.

    Article  Google Scholar 

  34. Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689–3696.

    Article  Google Scholar 

  35. Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62–71.

    Article  Google Scholar 

  36. Li, Z. L.; Hu, Y.; Howard, K. A.; Jiang, T. T.; Fan, X. L.; Miao, Z. H.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermochemotherapy and imaging. ACS Nano 2016, 10, 984–997.

    Article  Google Scholar 

  37. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem.Int. Ed. 2013, 125, 4254–4258.

    Article  Google Scholar 

  38. Yu, J.; Yin, W. Y.; Zheng, X. P.; Tian, G.; Zhang, X.; Bao, T.; Dong, X. H.; Wang, Z. L.; Gu, Z. J.; Ma, X. Y. et al. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 2015, 5, 931–945.

    Article  Google Scholar 

  39. Liu, T.; Shi, S. X.; Liang, G.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950–960.

    Article  Google Scholar 

  40. Wang, S. G.; Chen, Y.; Li, X.; Gao, W.; Zhang, L. L.; Liu, J.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L. Injectable 2D MoS2-integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia. Adv. Mater. 2015, 27, 7117–7122.

    Article  Google Scholar 

  41. Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.

    Article  Google Scholar 

  42. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

    Article  Google Scholar 

  43. Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014, 14, 687–693.

    Article  Google Scholar 

  44. Yan, H.; Zhao, L. Y.; Shang, W. T.; Liu, Z. Q.; Xie, W. S.; Cai, Q.; Xiong, Z. Y.; Zhang, R. R.; Li, B. H.; Sun, X. D. et al. General synthesis of high-performing magnetoconjugated polymer core-shell nanoparticles for multifunctional theranostics. Nano Res. 2017, 10, 704–717.

    Article  Google Scholar 

  45. Mosqueira, V. C. F.; Legrand, P.; Morgat, J. L.; Vert, M.; Mysiakine, E.; Gref, R.; Devissaguet, J. P.; Barratt, G. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: Effects of PEG chain length and density. Pharm. Res. 2001, 18, 1411–1419.

    Article  Google Scholar 

  46. Kamran, S.; Asadi, M.; Absalan, G. Adsorption of folic acid, riboflavin, and ascorbic acid from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. Anal. Methods 2014, 6, 798–806.

    Article  Google Scholar 

  47. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with pegylated MoO2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  48. Feng, W.; Chen, L.; Qin, M.; Zhou, X. J.; Zhang, Q. Q.; Miao, Y. K.; Qiu, K. X.; Zhang, Y. Z.; He, C. L. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer Therapy. Sci. Rep. 2015, 5, 17422.

    Article  Google Scholar 

  49. Xu, S. J.; Li, D.; Wu, P. Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127–1136.

    Article  Google Scholar 

  50. Gu, W.; Yan, Y. H.; Zhang, C. L.; Ding C. P.; Xian, Y. Z. One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl. Mater. Interfaces 2016, 8, 11272–11279.

    Article  Google Scholar 

  51. Wang, S. G.; Li, K.; Chen, Y.; Chen, H. G.; Ma, M.; Feng, G. W.; Zhao, Q. H.; Shi, H. L. Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206–217.

    Article  Google Scholar 

  52. Yuan, J.; Liu, J. L.; Song, Q.; Wang, D.; Xie, W. S.; Yan, H.; Zhou, J. F.; Wei, Y.; Sun, X. D.; Zhao, L. Y. Photoinduced mild hyperthermia and synergistic chemotherapy by onepot-synthesized docetaxel-loaded poly(lactic-co-glycolic acid)/polypyrrole nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 24445–24454.

    Article  Google Scholar 

  53. Wang, Z. Z.; Chen, Z. W.; Liu, Z.; Shi, P.; Dong, K.; Ju, E. G.; Ren, J. S.; Qu, X. G. A multi-stimuli responsive gold nanocage–hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014, 35, 9678–9688.

    Article  Google Scholar 

  54. Xie, W. S.; Gao, Q.; Guo, Z. H.; Wang, D.; Gao, F.; Wang, X. M.; Wei, Y.; Zhao, L. Y. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. ACS Appl. Mater. Interfaces 2017, DOI: 10.1021/acsami.7b10699.

    Google Scholar 

  55. Blanco-Andujar, C.; Walter, A.; Cotin, G.; Bordeianu, C.; Mertz, D.; Felder-Flesch, D.; Begin-Colin, S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 2016, 11, 1889–1910.

    Article  Google Scholar 

  56. Awasthi, V. D.; Garcia, D.; Goins, B. A.; Phillips, W. T. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int. J. Pharm. 2003, 253, 121–132.

    Article  Google Scholar 

  57. Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henty, H.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chen. Soc. 2009, 131, 4783–4787.

    Article  Google Scholar 

  58. Tockary, T. A.; Osada, K.; Chen, Q. X.; Machitani, K.; Dirisala, A.; Uchida, S.; Nomoto, T.; Toh, K.; Matsumoto, Y.; Itaka, K. et al. Tethered PEG crowdedness determining shape and blood circulation profile of polyplex micelle gene carriers. Macromolecules 2013, 46, 6585–6592.

    Article  Google Scholar 

  59. Zhao, L. Y.; Zheng, Y. J.; Yan, H.; Xie, W. S.; Sun, X. D.; Li, N.; Tang, J. T. 2-Deoxy-D-glucose modified magnetic nanoparticles with dual functional properties: Nanothermotherapy and magnetic resonance imaging. J. Nanosci. Nanotechnol. 2016, 16, 2401–2407.

    Article  Google Scholar 

  60. Pawar, S. K.; Vavia, P. Efficacy interactions of PEG-DOX-N-acetyl glucosamine prodrug conjugate for anticancer therapy. Eur. J. Pharm. Biopharm. 2015, 97, 454–463.

    Article  Google Scholar 

  61. Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392.

    Google Scholar 

  62. Hatakeyama, H.; Akita, H.; Kogure, K.; Oishi, M.; Nagasaki, Y.; Kihira, Y.; Ueno, M.; Kobayashi, H.; Kikuchi, H.; Harashima, H. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007, 14, 68–77

    Article  Google Scholar 

  63. Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Delivery Rev. 2011, 63, 136–151.

    Article  Google Scholar 

  64. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009, 3, 2919–2926.

    Article  Google Scholar 

  65. Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110–1120.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC) (No. 81671829).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiming Fan, Xiaodan Sun or Lingyun Zhao.

Electronic supplementary material

12274_2017_1871_MOESM1_ESM.pdf

Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Gao, Q., Wang, D. et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Res. 11, 2470–2487 (2018). https://doi.org/10.1007/s12274-017-1871-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1871-1

Keywords

Navigation