Skip to main content
Log in

Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) with distinct localized surface plasmon resonance (LSPR) absorption spectra can be synthesized using different proteins as templates upon irradiation by light. We utilized the multiple readouts of LSPR signals of AgNPs to construct sensor arrays for pattern recognition of proteins. Room temperature, aqueous solutions, and lack of harsh reducing reagents make the whole process inherently “green”. Meanwhile, the strategy efficiently simplified the process of array-receptor preparation and data acquisition, leading to lower time consumption, sample use, and cost. Furthermore, the system can differentiate proteins using flexible and alterable sensor elements by choosing different combinations of LSPR signals at different wavelengths. The principle of the sensor design can also be further extended to differentiate other biomolecules. The study provides a new method to construct feasible, economical, and general nanoparticle-based sensing arrays for pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, A. T.; Anslyn, E. V. Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev. 2006, 35, 14–28.

    Article  Google Scholar 

  2. Askim, J. R.; Mahmoudi, M.; Suslick, K. S. Optical sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649–8682.

    Article  Google Scholar 

  3. Diehl, K. L.; Anslyn, E. V. Array sensing using optical methods for detection of chemical and biological hazards. Chem. Soc. Rev. 2013, 42, 8596–8611.

    Article  Google Scholar 

  4. Chen, W. W.; Li, Q. Z.; Zheng, W. S.; Hu, F.; Zhang, G. X.; Wang, Z.; Zhang, D. Q.; Jiang, X. Y. Identification of bacteria in water by a fluorescent array. Angew. Chem., Int. Ed. 2014, 53, 13734–13739.

    Article  Google Scholar 

  5. Rana, S.; Elci, S. G.; Mout, R.; Singla, A. K.; Yazdani, M.; Bender, M.; Bajaj, A.; Saha, K.; Bunz, U. H.; Jirik, F. R. et al. Ratiometric array of conjugated polymers-fluorescent protein provides a robust mammalian cell sensor. J. Am. Chem. Soc. 2016, 138, 4522–4529.

    Article  Google Scholar 

  6. Bunz, U. H. F.; Rotello, V. M. Gold nanoparticle-fluorophore complexes: Sensitive and discerning “noses” for biosystems sensing. Angew. Chem., Int. Ed. 2010, 49, 3268–3279.

    Article  Google Scholar 

  7. Chou, S. S.; De, M.; Luo, J. Y.; Rotello, V. M.; Huang, J. X.; Dravid, V. P. Nanoscale graphene oxide (nGO) as artificial receptors: Implications for biomolecular interactions and sensing. J. Am. Chem. Soc. 2012, 134, 16725–16733.

    Article  Google Scholar 

  8. Pei, H.; Li, J.; Lv, M.; Wang, J. Y.; Gao, J. M.; Lu, J. X.; Li, Y. P.; Huang, Q.; Hu, J.; Fan, C. H. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 2012, 134, 13843–13849.

    Article  Google Scholar 

  9. Ran, X.; Pu, F.; Ren, J. S.; Qu, X. G. A CuS-based chemical tongue chip for pattern recognition of proteins and antibioticresistant bacteria. Chem. Commun. 2015, 51, 2675–2678.

    Article  Google Scholar 

  10. Rana, S.; Le, N. D. B.; Mout, R.; Saha, K.; Tonga, G. Y.; Bain, R. E. S.; Miranda, O. R.; Rotello, C. M.; Rotello, V. M. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nat. Nanotechnol. 2015, 10, 65–69.

    Article  Google Scholar 

  11. Pu, F.; Ran, X.; Ren, J. S.; Qu, X. G. Artificial tongue based on metal-biomolecule coordination polymer nanoparticles. Chem. Commun. 2016, 52, 3410–3413.

    Article  Google Scholar 

  12. Liu, B. W.; Liu, J. W. Comprehensive screen of metal oxide nanoparticles for DNA adsorption, fluorescence quenching, and anion discrimination. ACS Appl. Mater. Interfaces 2015, 7, 24833–24838.

    Article  Google Scholar 

  13. Wu, L.; Ji, H. W.; Guan, Y. J.; Ran, X.; Ren, J. S.; Qu, X. G. A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. NPG Asia Mater. 2017, 9, e356.

    Article  Google Scholar 

  14. Yuen, L. H.; Franzini, R. M.; Tan, S. S.; Kool, E. T. Largescale detection of metals with a small set of fluorescent DNA-like chemosensors. J. Am. Chem. Soc. 2014, 136, 14576–14582.

    Article  Google Scholar 

  15. Wu, D. L.; Schanze, K. S. Protein induced aggregation of conjugated polyelectrolytes probed with fluorescence correlation spectroscopy: Application to protein identification. ACS Appl. Mater. Interfaces 2014, 6, 7643–7651.

    Article  Google Scholar 

  16. Chen, K.; Shu, Q. H.; Schmittel, M. Design strategies for lab-on-a-molecule probes and orthogonal sensing. Chem. Soc. Rev. 2015, 44, 136–160.

    Article  Google Scholar 

  17. Wu, P.; Miao, L. N.; Wang, H. F.; Shao, X. G.; Yan, X. P. A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew. Chem., Int. Ed. 2011, 50, 8118–8121.

    Article  Google Scholar 

  18. Lu, Y. X.; Kong, H.; Wen, F.; Zhang, S. C.; Zhang, X. R. Lab-on-graphene: Graphene oxide as a triple-channel sensing device for protein discrimination. Chem. Commun. 2013, 49, 81–83.

    Article  Google Scholar 

  19. He, Y.; He, X.; Liu, X. Y.; Gao, L. F.; Cui, H. Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and its application to protein sensing arrays. Anal. Chem. 2014, 86, 12166–12171.

    Article  Google Scholar 

  20. Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 2015, 27, 7782–7787.

    Article  Google Scholar 

  21. Motl, N. E.; Smith, A. F.; DeSantis, C. J.; Skrabalak, S. E. Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 2014, 43, 3823–3834.

    Article  Google Scholar 

  22. Kumar, A.; Kumar, V. Biotemplated inorganic nanostructures: Supramolecular directed nanosystems of semiconductor(s)/ metal(s) mediated by nucleic acids and their properties. Chem. Rev. 2014, 114, 7044–7078.

    Article  Google Scholar 

  23. Song, T. J.; Tang, L. H.; Tan, L. H.; Wang, X. J.; Satyavolu, N. S. R.; Xing, H.; Wang, Z. D.; Li, J. H.; Liang, H. J.; Lu, Y. DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds. Angew. Chem., Int. Ed. 2015, 54, 8114–8118.

    Article  Google Scholar 

  24. Pazos, E.; Sleep, E.; Rubert Pérez, C. M.; Lee, S. S.; Tantakitti, F.; Stupp, S. I. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: Hybrid nanostructures with antimicrobial properties. J. Am. Chem. Soc. 2016, 138, 5507–5510.

    Article  Google Scholar 

  25. Leng, Y. M.; Fu, L.; Ye, L. Q.; Li, B.; Xu, X. M.; Xing, X. J.; He, J. B.; Song, Y. L.; Leng, C. L.; Guo, Y. M. et al. Protein-directed synthesis of highly monodispersed, spherical gold nanoparticles and their applications in multidimensional sensing. Sci. Rep. 2016, 6, 28900.

    Article  Google Scholar 

  26. Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330–6374.

    Article  Google Scholar 

  27. Chiu, C. Y.; Ruan, L. Y.; Huang, Y. Biomolecular specificity controlled nanomaterial synthesis. Chem. Soc. Rev. 2013, 42, 2512–2527.

    Article  Google Scholar 

  28. Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. An injectable selfassembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 2016, 28, 3669–3676.

    Article  Google Scholar 

  29. Liu, K.; Yuan, C. Q.; Zou, Q. L.; Xie, Z. C.; Yan, X. H. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angew. Chem., Int. Ed. 2017, 56, 7876–7880.

    Article  Google Scholar 

  30. Galloway, J. M.; Staniland, S. S. Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces. J. Mater. Chem. 2012, 22, 12423–12434.

    Article  Google Scholar 

  31. Wang, G. Q.; Nishio, T.; Sato, M.; Ishikawa, A.; Nambara, K.; Nagakawa, K.; Matsuo, Y.; Niikura, K.; Ijiro, K. Inspiration from chemical photography: Accelerated photoconversion of AgCl to functional silver nanoparticles mediated by DNA. Chem. Commun. 2011, 47, 9426–9428.

    Article  Google Scholar 

  32. Wang, G. Q.; Mitomo, H.; Matsuo, Y.; Niikura, K.; Maeda, M.; Ijiro, K. DNA-modulated photo-transformation of AgCl to silver nanoparticles: Visiting the formation mechanism. J. Colloid Interface Sci. 2015, 452, 224–234.

    Article  Google Scholar 

  33. Kracht, S.; Messerer, M.; Lang, M.; Eckhardt, S.; Lauz, M.; Grobéty, B.; Fromm, K. M.; Giese, B. Electron transfer in peptides: On the formation of silver nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 2912–2916.

    Article  Google Scholar 

  34. Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J.; Y. Whangbo, M. H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem., Int. Ed. 2008, 47, 7931–7933.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (Nos. 21210002, 21673223, 21431007, and 21533008), and the Youth Innovation Promotion Association CAS (No. 2014202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsong Ren or Xiaogang Qu.

Electronic supplementary material

12274_2017_1819_MOESM1_ESM.pdf

Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, F., Ran, X., Guan, M. et al. Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition. Nano Res. 11, 3213–3221 (2018). https://doi.org/10.1007/s12274-017-1819-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1819-5

Keywords

Navigation