Skip to main content
Log in

Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Impedance matching is important for achieving high-efficiency microwave absorbers. The high conductivity of dielectric loss materials such as pure metals and carbon nanomaterials generally results in poor absorption owing to the low impedance matching between the absorbers and air. Carbon nanostructures are very promising candidates for high-efficiency absorption because of their attractive features including low density, high surface area, and good stability. Herein, a new strategy is proposed to improve the impedance matching of dielectric loss materials using electrospun carbon nanofibers as an example. The carbon nanofibers are coated with specifically designed gradient multilayer nanofilms with gradually increasing electroconductibility synthesized by doping ZnO with different Al2O3 content (AZO) by atomic layer deposition. The gradient nanofilms are composed of five layers of dielectric films, namely, pure Al2O3, AZO (5:1, the pulse cycle ratio of ZnO to Al2O3), pure ZnO, AZO (10:1), and AZO (20:1). The versatile gradient films serve as intermediate layers to tune the impedance matching between air and the carbon nanofiber surfaces. Therefore, the carbon nanofibers coated with gradient films of rationally selected thicknesses exhibit remarkably enhanced microwave absorption performance, and the optimal reflection loss reaches −58.5 dB at 16.2 GHz with a thickness of only 1.8 mm. This work can help further understand the contribution of impedance matching to microwave absorption. Our strategy is general and can be applied to improve the absorption properties of other dielectric loss materials and even for applications in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  Google Scholar 

  2. Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

    Article  Google Scholar 

  3. Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal–organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.

    Article  Google Scholar 

  4. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    Article  Google Scholar 

  5. Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959–7965.

    Article  Google Scholar 

  6. Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS nano 2015, 9, 4026–4035.

    Article  Google Scholar 

  7. Zhang, B.; Yu, Y.; Huang, Z. D.; He, Y. B.; Jang, D.; Yoon, W. S.; Mai, Y. W.; Kang, F. Y.; Kim, J. K. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 2012, 5, 9895–9902.

    Article  Google Scholar 

  8. Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 2006, 16, 2393–2397.

    Article  Google Scholar 

  9. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    Article  Google Scholar 

  10. Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

    Article  Google Scholar 

  11. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasobi, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  Google Scholar 

  12. Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

    Article  Google Scholar 

  13. Liu, J.; Cao, W. Q.; Jin, H. B.; Yuan, J.; Zhang, D. Q.; Cao, M. S. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 2015, 3, 4670–4677.

    Article  Google Scholar 

  14. Wang, S.; Xiao, N.; Zhou, Y.; Ling, Z.; Li, M. Y.; Qiu, J. S. Lightweight carbon foam from coal liquefaction residue with broad-band microwave absorbing capability. Carbon 2016, 105, 224–226.

    Article  Google Scholar 

  15. Lee, I.; Hammond, P. T.; Rubner, M. F. Selective electroless nickel plating of particle arrays on polyelectrolyte multilayers. Chem. Mater. 2003, 15, 4583–4589.

    Article  Google Scholar 

  16. Knutsson, A.; Johansson, M. P.; Persson, P. O. Å.; Hultman, L.; Odén, M. Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 2008, 93, 143110.

    Article  Google Scholar 

  17. Wang, Y. M.; Luo, Z.; Hong, R. Y. Microstructure and microwave absorption properties of Fe3O4/dextran/SnO2 multilayer microspheres. Mater. Lett. 2011, 65, 3241–3244.

    Article  Google Scholar 

  18. Ritala, M.; Kukli, K.; Rahtu, A.; Räisänen, P. I.; Leskelä, M.; Sajavaara, T.; Keinonen, J. Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 2000, 288, 319–321.

    Article  Google Scholar 

  19. George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2009, 110, 111–131.

    Article  Google Scholar 

  20. Guan, C.; Wang, X. H.; Zhang, Q.; Fan, Z. X.; Zhang, H.; Fan, H. J. Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 2014, 14, 4852–4858.

    Article  Google Scholar 

  21. Peng, X.; Sun, X. Y.; Spagnola, J. C.; Hyde, G. K.; Spontak, R. J.; Parsons, G. N. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett. 2007, 7, 719–722.

    Article  Google Scholar 

  22. Ge, H. B.; Zhang, B.; Gu, X. M.; Liang, H. J.; Yang, H. M.; Gao, Z.; Wang, J. G.; Qin, Y. A tandem catalyst with multiple metal oxide interfaces produced by atomic layer deposition. Angew. Chem., Int. Ed. 2016, 55, 7081–7085.

    Article  Google Scholar 

  23. Zhang, B.; Chen, Y.; Li, J. W.; Pippel, E.; Yang, H. M.; Gao, Z.; Qin, Y. High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition. ACS Catal. 2015, 5, 5567–5573.

    Article  Google Scholar 

  24. Bachmann, J.; Jing, J.; Knez, M.; Barth, S.; Shen, H.; Mathur, S.; Gösele, U.; Nielsch, K. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J. Am. Chem. Soc. 2007, 129, 9554–9555.

    Article  Google Scholar 

  25. Kim, G. M.; Lee, S. M.; Michler, G. H.; Roggendorf, H.; Gösele, U.; Knez, M. Nanostructured pure anatase titania tubes replicated from electrospun polymer fiber templates by atomic layer deposition. Chem. Mater. 2008, 20, 3085–3091.

    Article  Google Scholar 

  26. Kayaci, F.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: Flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4, 6185–6194.

    Article  Google Scholar 

  27. Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

    Article  Google Scholar 

  28. Zhao, S. C.; Gao, Z.; Chen, C. Q.; Wang, G. Z.; Zhang, B.; Chen, Y.; Zhang, J.; Li, X.; Qin, Y. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 2016, 98, 196–203.

    Article  Google Scholar 

  29. Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/ Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  Google Scholar 

  30. Tian, X. D.; Zhao, N.; Song, Y.; Wang, K.; Xu, D. F.; Li, X.; Guo, Q. G.; Liu, L. Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution. Electrochim. Acta 2015, 185, 40–51.

    Article  Google Scholar 

  31. Liu, Y. Q.; He, L. L.; Lu, X. F.; Xiao, P. Transmission electron microscopy study of the microstructure of unidirectional C/C composites fabricated by catalytic chemical vapor infiltration. Carbon 2013, 51, 381–389.

    Article  Google Scholar 

  32. Zhou, G. H.; Liu, Y. Q.; He, L. L.; Guo, Q. G.; Ye, H. Q. Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites. Carbon 2011, 49, 2883–2892.

    Article  Google Scholar 

  33. Banerjee, P.; Lee, W. J.; Bae, K. R.; Lee, S. B.; Rubloff, G. W. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. J. Appl. Phys. 2010, 108, 043504.

    Article  Google Scholar 

  34. Lee, D. J.; Kim, H. M.; Kwon, J. Y.; Choi, H.; Kim, S. H.; Kim, K. B. Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Funct. Mater. 2011, 21, 448–455.

    Article  Google Scholar 

  35. Nayak, P. K.; Wang, Z. H.; Alshareef, H. N. Indium-free fully transparent electronics deposited entirely by atomic layer deposition. Adv. Mater. 2016, 28, 7736–7744.

    Article  Google Scholar 

  36. Naito, Y.; Suetake, K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 1971, 19, 65–72.

    Article  Google Scholar 

  37. Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

    Article  Google Scholar 

  38. Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.

    Article  Google Scholar 

  39. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  Google Scholar 

  40. Weston, V. Theory of absorbers in scattering. IEEE Trans. Antenn. Propag. 1963, 11, 578–584.

    Article  Google Scholar 

  41. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  Google Scholar 

  42. Cui, C. K.; Du, Y. C.; Li, T. H.; Zheng, X. Y.; Wang, X. H.; Han, X. J.; Xu, P. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 2012, 116, 9523–9531.

    Article  Google Scholar 

  43. Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

    Article  Google Scholar 

  44. Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415.

    Article  Google Scholar 

  45. Pan, H. X.; Yin, X. W.; Xue, J. M.; Cheng, L. F; Zhang, L. T. In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 2016, 107, 36–45.

    Article  Google Scholar 

  46. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  Google Scholar 

  47. Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

    Article  Google Scholar 

  48. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 2013, 25, 6905–6910.

    Article  Google Scholar 

  49. Wang, Y.; Du, Y. C.; Qiang, R.; Tian, C. H.; Xu, P.; Han, X. J. Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv. Mater. Interfaces 2016, 3, 1500684.

    Article  Google Scholar 

  50. Fang, J. Y.; Liu, T.; Chen, Z.; Wang Y.; Wei, W.; Yue, X. G.; Jiang, Z. H. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 2016, 8, 8899–8909.

    Article  Google Scholar 

  51. Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.

    Article  Google Scholar 

  52. Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

    Article  Google Scholar 

  53. Li, G. M.; Wang, L. C.; Li, W. X.; Ding, R. M.; Xu, Y. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent. Phys. Chem. Chem. Phys. 2014, 16, 12385–12392.

    Article  Google Scholar 

  54. Bowler, N. Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 703–711.

    Article  Google Scholar 

  55. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, W. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

    Article  Google Scholar 

  56. Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294.

    Article  Google Scholar 

  57. Yang, H. J.; Cao, W. Q.; Zhang, D. Q.; Su, T. J.; Shi, H. L.; Wang, W. Z.; Yuan, J.; Cao, M. S. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21376256 and 51602322), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015139), the Research Project of Shanxi Scholarship Council (No. 2013-152), the Hundred Talent Program of the Chinese Academy of Sciences, and the Hundred Talent Program of Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Qin.

Electronic supplementary material

12274_2017_1664_MOESM1_ESM.pdf

Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Yan, L., Tian, X. et al. Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 11, 530–541 (2018). https://doi.org/10.1007/s12274-017-1664-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1664-6

Keywords

Navigation