Skip to main content
Log in

Hybridized electronic states between CdSe nanoparticles and conjugated organic ligands: A theoretical and ultrafast photo-excited carrier dynamics study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Formation of densely packed thin films of semiconductor nanocrystals is advantageous for the exploitation of their unique optoelectronic properties for real-world applications. Here we investigate the fundamental role of the structure of the bridging ligand on the optoelectronic properties of the resulting hybrid film. In particular, we considered hybrid films formed using the same CdSe nanocrystals and two organic ligands that have the same bidentate dithiocarbamate binding moiety, but differ in their bridging structures, one bridged by ethylene, the other by phenylene that exhibits conjugation. Based on the results of photo-excited carrier dynamics experiments combined with theoretical calculations on the electronic states of bridged CdSe layers, we show that only the phenylene-based ligand presents a strong hybridization of the molecular HOMO state with CdSe layers, that is a marker of formation of an effective bridge. We argue that this hybridization spread favors the hopping of photo-excited carriers between nanocrystals, which may explain the reported larger photo-currents in phenylene-based hybrid films than those observed in ethylene-based ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 3204–3209.

    Article  Google Scholar 

  2. Kalyuzhny, G.; Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B2005, 109, 7012–7021.

    Article  Google Scholar 

  3. Nguyen Truong, N. T.; Ngoc Nguyen, T. P.; Park, C. Structural and optoelectronic properties of CdSetetrapod nanocrystals for bulk heterojunction solar cell applications. Int. J. Photoenergy 2013, 2013, Article ID 146582.

  4. Zotti, G.; Vercelli, B.; Berlin, A.; Virgili, T. Multilayers of CdSenanocrystals and Bis(dithiocarbamate) linkers displaying record photoconduction. J. Phys. Chem. C 2012, 116, 25689–25693.

    Article  Google Scholar 

  5. Virgili, T.; Calzolari, A.; Suárez López, I.; Vercelli, B.; Zotti, G.; Catellani, A.; Ruini, A.; Tassone, F. Charge separation in the hybrid CdSenanocrystal–organic interface: Role of the ligands studied by ultrafast spectroscopy and density functional theory. J. Phys. Chem. C 2013, 117, 5969–5974.

    Article  Google Scholar 

  6. Virgili, T.; Suárez López, I.; Vercelli, B.; Angella, G.; Zotti, G.; Cabanillas-Gonzalez, J.; Granados, D.; Luer, L.; Wannemacher, R.; Tassone, F. Spectroscopic signature of trap states in assembled CdSenanocrystal hybrid films. J. Phys. Chem. C 2012, 116, 16259–16263.

    Article  Google Scholar 

  7. Hao, E. C.; Lian, T. Q. Layer-by-layer assembly of CdSe nanoparticles based on hydrogen bonding. Langmuir 2000, 16, 7879–7881.

    Article  Google Scholar 

  8. Constantine, C. A.; Gattás-Asfura, K. M.; Mello, S. V.; Crespo, G.; Rastogi, V.; Cheng, T. C.; DeFrank, J. J.; Leblanc, R. M. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. J. Phys. Chem. B 2003, 107, 13762–13764.

    Article  Google Scholar 

  9. Zotti, G.; Vercelli, B.; Berlin, A.; Chin, P. T. K.; Giovanella, U. Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 1. CdSenanocrystal-polymer multilayers. Optical, electrochemical, photoelectrochemical and photoconductive properties. Chem. Mater. 2009, 21, 2258–2271.

    Google Scholar 

  10. Zotti, G.; Vercelli, B.; Berlin, A.; Pasini, M.; Nelson, T. L.; McCullough, R. D.; Virgili, T. Self-assembled structures of semiconductor nanocrystals and polymers for photovoltaics. 2. Multilayers of CdSe nanocrystals and oligo(poly)thiophenebased molecules. Optical, electrochemical, photoelectrochemical, and photoconductive properties. Chem. Mater. 2010, 22, 1521–1532.

    Google Scholar 

  11. Liang, Z. Q.; Dzienis, K. L.; Xu, J.; Wang, Q. Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles: Multilayer structure and photovoltaic properties. Adv. Funct. Mater. 2006, 16, 542–548.

    Article  Google Scholar 

  12. Kim, D.; Okahara, S.; Shimura, K.; Nakayama, M. Layerby- layer assembly of colloidal CdS and ZnS-CdSquantum dots and improvement of their photoluminescence properties. J. Phys. Chem. C 2009, 113, 7015–7018.

    Article  Google Scholar 

  13. Vercelli, B.; Angella, G.; Virgili, T.; Suárez López, I.; Pasini, M. Photo-physical behaviour of CdSe nanocrystals/ bis(dithiocarbamate) linker multilayered hybrid systems. J. Nanosci. Nanotechnol. 2015, 15, 3540–3544.

    Article  Google Scholar 

  14. Cass, L. C.; Swenson, N. K.; Weiss, E. A. Electronic and vibrational structure of complexes of tetracyanoquinodimethane with cadmium chalcogenide quantum dots. J. Phys. Chem. C 2014, 118, 18263–18270.

    Article  Google Scholar 

  15. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: Amodular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  16. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  17. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  18. Calzolari, A.; Ruini, A.; Catellani, A. Surface effects on catechol/semiconductor interfaces. J. Phys. Chem. C 2012, 116, 17158–17163.

    Article  Google Scholar 

  19. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  20. Morris-Cohen, A. J.; Peterson, M. D.; Frederick, M. T.; Kamm, J. M.; Weiss, E. A. Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens. J. Phys. Chem. Lett. 2012, 3, 2840–2844.

    Article  Google Scholar 

  21. Frederick, M. T.; Amin, V. A.; Swenson, N. K.; Ho, A. Y.; Weiss, E. A. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals. Nano Lett. 2013, 13, 287–292.

    Article  Google Scholar 

  22. Frederick, M. T.; Weiss, E. A. Relaxation of exciton confinement in CdSequantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 2010, 4, 3195–3200.

    Article  Google Scholar 

  23. Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.

    Article  Google Scholar 

  24. Kriegel, I.; Scotognella, F.; Soavi, G.; Brescia, R.; Rodríguez-Fernández, J.; Feldmann, J.; Lanzani, G.; Tassone, F. Delayed electron relaxation in CdTenanorods studied by spectral analysis of the ultrafast transient absorption. Chem. Phys. 2016, 471, 39–45.

    Article  Google Scholar 

  25. Malko, A. V.; Mikhailovsky, A. A.; Petruska, M. A.; Hollingsworth, J. A.; Klimov, V. I. Interplay between optical gain and photoinduced absorption in CdSenanocrystals. J. Phys. Chem. B 2004, 108, 5250–5255.

    Article  Google Scholar 

  26. Knowles, K. E.; Frederick, M. T.; Tice, D. B.; Morris-Cohen, A. J.; Weiss, E. A. Colloidal quantum dots: Think outside the (Particle-in-a-)box. J. Phys. Chem. Lett. 2012, 3, 18–26.

    Article  Google Scholar 

  27. Azpiroz, J. M.; De Angelis, F. Ligand induced spectral changes in CdSequantum dots. ACS Appl. Mater. Interfaces 2015, 7, 19736–19745.

    Article  Google Scholar 

  28. Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455–5460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tersilla Virgili or Francesco Tassone.

Electronic supplementary material

12274_2017_1613_MOESM1_ESM.pdf

Hybridized electronic states between CdSe nanoparticles and conjugated organic ligands: A theoretical and ultrafast photo-excited carrier dynamics study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virgili, T., Calzolari, A., Suárez López, I. et al. Hybridized electronic states between CdSe nanoparticles and conjugated organic ligands: A theoretical and ultrafast photo-excited carrier dynamics study. Nano Res. 11, 142–150 (2018). https://doi.org/10.1007/s12274-017-1613-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1613-4

Keywords

Navigation