Skip to main content
Log in

Promising electroplating solution for facile fabrication of Cu quantum point contacts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this article, we report on the fabrication and transport measurements of Cu quantum point contacts prepared by a novel, electrochemically assisted mechanically controllable break junction (EC-MCBJ) method. By employing photolithography and wet-etching processes, suspended electrode pairs were patterned and fabricated successfully on Si microchips. Rather than adopting an acid Cu electroplating solution, a novel alkaline electroplating solution was developed and utilized to establish Cu nanocontacts between electrode pairs. Typically, the widths of the as-fabricated Cu nanocontacts were found to be smaller than 18 nm. A large number of Cu quantum point contacts were then produced and characterized by a home-built MCBJ setup. In addition to the conventional histogram, where peaks tend to decrease in amplitude with increasing conductance, an anomalous type of conductance histogram, exhibiting different peak amplitudes, was observed. Through statistical analysis of the maximum allowable bending of the Si microchips, and theoretical calculations, we demonstrated that our alkaline Cu electroplating solution affords Cu nanocontacts that are compatible with subsequent MCBJ operations, which is essential for the fabrication of Cu quantum point contacts. As sophisticated e-beam lithography is not required, the EC-MCBJ method is fast, simple, and cost-effective. Moreover, it is likely to be suitable for the fabrication and characterization of quantum point contacts of various metals from their respective electroplating solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.

    Article  Google Scholar 

  2. Fuechsle, M.; Miwa, J. A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L. C. L.; Klimeck, G.; Simmons, M. Y. A single-atom transistor. Nat. Nanotechnol. 2012, 7, 242–246.

    Article  Google Scholar 

  3. Schirm, C.; Matt, M.; Pauly, F.; Cuevas, J. C.; Nielaba, P.; Scheer, E. A current-driven single-atom memory. Nat. Nanotechnol. 2013, 8, 645–648.

    Article  Google Scholar 

  4. Zhou, Y. S.; Li, S. M.; Niu, S. M.; Wang, Z. L. Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 2016, 9, 3705–3713.

    Article  Google Scholar 

  5. Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

    Article  Google Scholar 

  6. Hybertsen, M. S.; Venkataraman, L. Structure–property relationships in atomic-scale junctions: Histograms and beyond. Acc. Chem. Res. 2016, 49, 452–460.

    Article  Google Scholar 

  7. Olesen, L.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F.; Schiøtz, J.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K. Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 1994, 72, 2251–2254.

    Article  Google Scholar 

  8. Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

    Article  Google Scholar 

  9. Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

    Article  Google Scholar 

  10. Xiang, A.; Li, H.; Chen, S. J.; Liu, S.-X.; Decurtins, S.; Bai, M. L.; Hou, S. M.; Liao, J. H. Electronic transport in benzodifuran single-molecule transistors. Nanoscale 2015, 7, 7665–7673.

    Article  Google Scholar 

  11. Li, C. Z.; He, H. X.; Tao, N. J. Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching. Appl. Phys. Lett. 2000, 77, 3995–3997.

    Article  Google Scholar 

  12. Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Reproducible measurement of single-molecule conductivity. Science 2001, 294, 571–574.

    Article  Google Scholar 

  13. Hamill, J. M.; Wang, K.; Xu, B. Q. Force and conductance molecular break junctions with time series crosscorrelation. Nanoscale 2014, 6, 5657–5661.

    Article  Google Scholar 

  14. Moreland, J.; Ekin, J. W. Electron tunneling experiments using Nb-Sn “break” junctions. J. Appl. Phys. 1985, 58, 3888–3895.

    Article  Google Scholar 

  15. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

    Article  Google Scholar 

  16. Zhou, C.; Muller, C. J.; Deshpande, M. R.; Sleight, J. W.; Reed, M. A. Microfabrication of a mechanically controllable break junction in silicon. Appl. Phys. Lett. 1995, 67, 1160–1162.

    Article  Google Scholar 

  17. Martin, C. A.; Ding, D. P.; van der Zant, H. S. J.; van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: Possibilities and limitations. New J. Phys. 2008, 10, 065008.

    Article  Google Scholar 

  18. Huisman, E. H.; Trouwborst, M. L.; Bakker, F. L.; de Boer, B.; van Wees, B. J.; van der Molen, S. J. Stabilizing single atom contacts by molecular bridge formation. Nano Lett. 2008, 8, 3381–3385.

    Article  Google Scholar 

  19. González, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.; Schönenberger, C.; Calame, M. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 2006, 6, 2238–2242.

    Article  Google Scholar 

  20. Muller, C. J.; de Bruyn Ouboter, R. Fabrication of inherently stable and adjustable contacts of atomic size. J. Appl. Phys. 1995, 77, 5231–5236.

    Article  Google Scholar 

  21. Tian, J.-H.; Liu, B.; Li, X. L.; Yang, Z.-L.; Ren, B.; Wu, S.-T.; Tao, N. J.; Tian, Z.-Q. Study of molecular junctions with a combined surface-enhanced raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.

    Article  Google Scholar 

  22. Li, X. L.; Hua, S. Z.; Chopra, H. D.; Tao, N. J. Formation of atomic point contacts and molecular junctions with a combined mechanical break junction and electrodeposition method. Micro. Nano. Lett. 2006, 1, 83–88.

    Article  Google Scholar 

  23. Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X. L.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z. et al. Conductance histogram evolution of an EC–MCBJ fabricated Au atomic point contact. Nanotechnology 2011, 22, 275313.

    Article  Google Scholar 

  24. Yang, Y.; Liu, J. Y.; Feng, S.; Wen, H. M.; Tian, J. H.; Zheng, J. T.; Schöllhorn, B.; Amatore, C.; Chen, Z. N.; Tian, Z. Q. Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ. Nano Res. 2016, 9, 560–570.

    Article  Google Scholar 

  25. Zheng, J.-T.; Yan, R.-W.; Tian, J.-H.; Liu, J.-Y.; Pei, L.-Q.; Wu, D.-Y.; Dai, K.; Yang, Y.; Jin, S.; Hong, W. J. et al. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo (phenylene ethynylene)s molecular junctions. Electrochim. Acta 2016, 200, 268–275.

    Article  Google Scholar 

  26. Krans, J. M.; van Ruitenbeek, J. M.; Fisun, V. V.; Yanson, I. K.; de Jongh, L. J. The signature of conductance quantization in metallic point contacts. Nature 1995, 375, 767–769.

    Article  Google Scholar 

  27. González, J. C.; Rodrigues, V.; Bettini, J.; Rego, L. G. C.; Rocha, A. R.; Coura, P. Z.; Dantas, S. O.; Sato, F.; Galvão, D. S.; Ugarte, D. Indication of unusual pentagonal structures in atomic-size Cu nanowires. Phys. Rev. Lett. 2004, 93, 126103.

    Article  Google Scholar 

  28. Costa-Krämer, J. L.; Díaz, M.; Serena, P. A. Magnetic field effects on total and partial conductance histograms in Cu and Ni nanowires. Appl. Phys. A 2005, 81, 1539–1543.

    Article  Google Scholar 

  29. Kiguchi, M.; Konishi, T.; Miura, S.; Murakoshi, K. The effect of hydrogen evolution reaction on conductance quantization of Au, Ag, Cu nanocontacts. Nanotechnology 2007, 18, 424011.

    Article  Google Scholar 

  30. Zhou, X. S.; Wei, Y. M.; Liu, L.; Chen, Z. B.; Tang, J.; Mao, B. W. Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: An electrochemical strategy. J. Am. Chem. Soc. 2008, 130, 13228–13230.

    Article  Google Scholar 

  31. Li, C. Z.; Tao, N. J. Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 1998, 72, 894–896.

    Article  Google Scholar 

  32. Li, C. Z.; Bogozi, A.; Huang, W.; Tao, N. J. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 1999, 10, 221–223.

    Article  Google Scholar 

  33. Miura, S.; Kiguchi, M.; Murakoshi, K. Formation of stable nanowires from ferromagnetic metals using 2-butyne-1, 4-diol. Surf. Sci. 2007, 601, 287–291.

    Article  Google Scholar 

  34. Mészáros, G.; Kronholz, S.; Karthäuser, S.; Mayer, D.; Wandlowski, T. Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps. Appl. Phys. A 2007, 87, 569–575.

    Article  Google Scholar 

  35. Zhou, X. Y.; Peng, Z. L.; Sun, Y. Y.; Wang, L. N.; Niu, Z. J.; Zhou, X. S. Conductance measurement of pyridyl-based single molecule junctions with Cu and Au contacts. Nanotechnology 2013, 24, 465204.

    Article  Google Scholar 

  36. Xu, J. Y.; Yang, F. Z.; Xie, Z. X.; Zhou, S. M. The investigation of the effect of Cl–ions on copper plating in acids baths. J. Xiamen Univ. (Nat. Sci.) 1994, 33, 647–651.

    Google Scholar 

  37. Gu, M.; Yang, F. Z.; Huang, L.; Yao, S. B.; Zhou, S. M. Effect of chloride ion on electrocrystallization of copper on glass carbon electrode. Acta Chim. Sinica 2002, 60, 1946–1950.

    Google Scholar 

  38. Liu, B.; Xiang, J.; Tian, J.-H.; Zhong, C.; Mao, B.-W.; Yang, F.-Z.; Chen, Z.-B.; Wu, S.-T.; Tian, Z.-Q. Controllable nanogap fabrication on microchip by chronopotentiometry. Electrochim. Acta 2005, 50, 3041–3047.

    Article  Google Scholar 

  39. Cui, Z. X.; Xue, Y. Q.; Li, B.; Li, P. Effect of particle size of nano-copper on the solubility in dilute sulphuric acid solution. Chem. Ind. Eng. Prog. 2012, 31, 1290–1292, 1297.

    Google Scholar 

  40. van Ruitenbeek, J. M.; Alvarez, A.; Piñeyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum. 1996, 67, 108–111.

    Article  Google Scholar 

  41. Vrouwe, S. A. G.; van der Giessen, E.; van der Molen, S. J.; Dulic, D.; Trouwborst, M. L.; van Wees, B. J. Mechanics of lithographically defined break junctions. Phys. Rev. B 2005, 71, 035313.

    Article  Google Scholar 

  42. Wang, F. Y.; Gao, Y. J.; Zhu, T. M.; Zhao, J. W. Shockinduced breaking in the gold nanowire with the influence of defects and strain rates. Nanoscale 2011, 3, 1624–1631.

    Article  Google Scholar 

  43. Yang, Y.; Chen, Z. B.; Liu, J. Y.; Lu, M.; Yang, D. Z.; Yang, F. Z.; Tian, Z. Q. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res. 2011, 4, 1199–1207.

    Article  Google Scholar 

  44. Kaneko, S.; Nakamura, Y.; Zhang, J. J.; Yang, X. B.; Zhao, J. W.; Kiguchi, M. Formation of single Cu atomic chain in nitrogen atmosphere. J. Phys. Chem. C 2015, 119, 862–866.

    Article  Google Scholar 

  45. Rodrigues, V.; Bettini, J.; Rocha, A. R.; Rego, L. G. C.; Ugarte, D. Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties. Phys. Rev. B 2002, 65, 153402.

    Article  Google Scholar 

  46. García-Mochales, P.; Paredes, R.; Peláez, S.; Serena, P. A. Statistical analysis of the breaking processes of Ni nanowires. Nanotechnology 2008, 19, 225704.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21503179, 21403181, 61573295, 21522508, 21673195, 21533006, and 61071010), the National Basic Research Program of China (No. 2015CB932300), the Natural Science Foundation of Fujian Province (No. 2016J05162), the Fundamental Research Funds for the Central Universities in China (Xiamen University, Nos. 20720170035 and 20720160092), and the Young Thousand Talent Project of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangzu Yang or Zhongqun Tian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, J., Zheng, J. et al. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 10, 3314–3323 (2017). https://doi.org/10.1007/s12274-017-1544-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1544-0

Keywords

Navigation