Skip to main content
Log in

Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)–two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent-mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm−2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type II band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalytic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  Google Scholar 

  2. Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060–2063.

    Article  Google Scholar 

  3. Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

    Article  Google Scholar 

  4. Zheng, W. W.; Wang, Z. X.; van Tol, J.; Dalal, N. S.; Strouse, G. F. Alloy formation at the tetrapod core/arm interface. Nano Lett. 2012, 12, 3132–3137.

    Article  Google Scholar 

  5. Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469–477.

    Article  Google Scholar 

  6. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

    Article  Google Scholar 

  7. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

    Article  Google Scholar 

  8. Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

    Article  Google Scholar 

  9. Liu, S. Q.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Synthesis of one-dimensional CdS@TiO2 core–shell nanocomposites photocatalyst for selective redox: The dual role of TiO2 shell. ACS Appl. Mater. Interfaces 2012, 4, 6378–6385.

    Article  Google Scholar 

  10. Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U. Au growth on semiconductor nanorods: Photoinduced versus thermal growth mechanisms. J. Am. Chem. Soc. 2009, 131, 17406–17411.

    Article  Google Scholar 

  11. Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem., Int. Ed. 2014, 53, 2339–2343.

    Article  Google Scholar 

  12. Liu, S. Q.; Tang, Z. R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053–5075.

    Article  Google Scholar 

  13. Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core-shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.

    Article  Google Scholar 

  14. Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core-shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.

    Article  Google Scholar 

  15. Han, S. C.; Pu, Y. C.; Zheng, L. X.; Hu, L. F.; Zhang, J. Z.; Fang, X. S. Uniform carbon-coated CdS core-shell nanostructures: Synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. J. Mater. Chem. A 2016, 4, 1078–1086.

    Article  Google Scholar 

  16. Ning, X. F.; Meng, S. G.; Fu, X. L.; Ye, X. J.; Chen, S. F. Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chem. 2016, 18, 3628–3639.

    Article  Google Scholar 

  17. Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.

    Article  Google Scholar 

  18. Peng, R.; Wu, C. M.; Baltrusaitis, J.; Dimitrijec, N. M.; Rajh, T.; Koodali, R. T. Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination. Chem. Commun. 2013, 49, 3221–3223.

    Article  Google Scholar 

  19. Han, S. C.; Hu, L. F.; Gao, N.; Al-Ghamdi, A. A.; Fang, X. S. Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity. Adv. Funct. Mater. 2014, 24, 3725–3733.

    Article  Google Scholar 

  20. Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177.

    Article  Google Scholar 

  21. Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. CdS/ graphene nanocomposite photocatalysts. Adv. Energy Mater. 2015, 5, 1500010.

    Article  Google Scholar 

  22. Zhang, J.; Zhu, Z. P.; Tang, Y. P.; Müllen, K.; Feng, X. L. Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 2014, 26, 734–738.

    Article  Google Scholar 

  23. Ma, S.; Xie, J.; Wen J. Q.; He K. L.; Li, X.; Liu, W.; Zhang, X. C. Constructing 2D layered hybrid CdS nanosheets/ MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl. Surf. Sci. 2017, 391, 580–591.

    Article  Google Scholar 

  24. Baek, S. N.; Jeong, T. S.; Youn, C. J.; Hong, K. J.; Park, J. S.; Shin, D. C.; Yoo, Y. T. Growth and characterization of the CdIn2S4/GaAs epilayers by hot wall epitaxy method. J. Cryst. Growth 2004, 262, 259–264.

    Article  Google Scholar 

  25. Kale, B. B.; Baeg, J. O.; Lee, S. M.; Chang, H.; Moon, S. J.; Lee, C. W. CdIn2S4 nanotubes and “marigold” nanostructures: A visible-light photocatalyst. Adv. Funct. Mater. 2006, 16, 1349–1354.

    Article  Google Scholar 

  26. Wang, W. J.; Ng, T. W.; Ho, W. K.; Huang, J. H.; Liang, S. J.; An, T. C.; Li, G. Y.; Yu, J. C.; Wong, P. K. CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms. Appl. Catal. B: Environ. 2013, 129, 482–490.

    Article  Google Scholar 

  27. Apte, S. K.; Garaje, S. N.; Bolade, R. D.; Ambekar, J. D.; Kulkarni, M. V.; Naik, S. D.; Gosavi, S. W.; Baeg, J. O.; Kale, B. B. Hierarchical nanostructures of CdIn2S4 via hydrothermal and microwave methods: Efficient solar-lightdriven photocatalysts. J. Mater. Chem. 2010, 20, 6095–6102.

    Article  Google Scholar 

  28. Ma, D. K.; Guan, M. L.; Liu, S. S.; Zhang, Y. Q.; Zhang, C. W.; He, Y. X.; Huang, S. M. Controlled synthesis of oliveshaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 2012, 41, 5581–5586.

    Article  Google Scholar 

  29. Guan, M. L.; Ma, D. K.; Hu, S. W.; Chen, Y. J.; Huang, S. M. From hollow olive-shaped BiVO4 to n−p core−shell BiVO4@Bi2O3 microspheres: Controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem. 2011, 50, 800–805.

    Article  Google Scholar 

  30. Cai, P.; Ma, D. K.; Liu, Q. C.; Zhou, S. M.; Chen, W.; Huang, S. M. Conversion of ternary Zn2SnO4 octahedrons into binary mesoporous SnO2 and hollow SnS2 hierarchical octahedrons by template-mediated selective complex extraction. J. Mater. Chem. A. 2013, 1, 5217–5223.

    Article  Google Scholar 

  31. Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B. 2006, 110, 8978–8985.

    Article  Google Scholar 

  32. Wang, Y. L.; Jiang, X. C.; Xia, Y. N. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 2003, 125, 16176–16177.

    Article  Google Scholar 

  33. Lu, Q. Y.; Gao, F.; Komarneni, S. Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods. J. Am. Chem. Soc. 2004, 126, 54–55.

    Article  Google Scholar 

  34. Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Improved photocatalytic performance of heterojunction by controlling the contact facet: High electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater. 2015, 25, 3074–3080.

    Article  Google Scholar 

  35. Huang, H. J.; Li, D. Z.; Lin, Q.; Zhang, W. J.; Shao, Y.; Chen, Y. B.; Sun, M.; Fu, X. Z. Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. Environ. Sci. Technol. 2009, 43, 4164–4168.

    Article  Google Scholar 

  36. Shen, Z. Y.; Chen, G.; Wang, Q.; Yu, Y. G.; Zhou, C.; Wang, Y. Sonochemistry synthesis and enhanced photocatalytic H2-production activity of nanocrystals embedded in CdS/ZnS/In2S3 microspheres. Nanoscale 2012, 4, 2010–2017.

    Article  Google Scholar 

  37. Shen, S. H.; Guo, L. J.; Chen, X. B.; Ren, F.; Mao, S. S. Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS. Int. J. Hydrogen Energy 2010, 35, 7110–7115.

    Article  Google Scholar 

  38. Lang, D.; Cheng, F. Y.; Xiang, Q. J. Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification. Catal. Sci. Technol. 2016, 6, 6207–6216.

    Article  Google Scholar 

  39. Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

    Article  Google Scholar 

  40. Dasgupta, N. P.; Sun, J. W.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H. W.; Yan, R. X.; Yang, P. D. 25th anniversary article: Semiconductor nanowires–synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184.

    Article  Google Scholar 

  41. Wang, M.; Jiang, J. G.; Shi, J. W.; Guo, L. J. CdS/CdSe core-shell nanorod arrays: Energy level alignment and enhanced photoelectrochemical performance. ACS Appl. Mater. Interfaces 2013, 5, 4021–4025.

    Google Scholar 

  42. Li, J. T.; Cushing, S. K.; Zheng, P.; Senty, T.; Meng, F. K.; Bristow, A. D.; Manivannan, A.; Wu, N. Q. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 2014, 136, 8438–8449.

    Article  Google Scholar 

  43. Maeda, K.; Higashi, M.; Siritanaratkul, B.; Abe, R.; Domen, K. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 2011, 133, 12334–12337.

    Article  Google Scholar 

  44. Li, Y. B.; Zhang, L.; Torres-Pardo, A.; González-Calbet, J. M.; Ma, Y. H.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 2013, 4, 2566.

    Google Scholar 

  45. Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836–840.

    Article  Google Scholar 

  46. Zhang, K.; Guo, L. J. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672–1690.

    Article  Google Scholar 

  47. Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Noble metal-free reduced graphene oxide-ZnxCd1–x S nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584–4589.

    Article  Google Scholar 

  48. Li, Q.; Meng, H.; Zhou, P.; Zheng, Y. Q.; Wang, J.; Yu, J. G.; Gong, J. R. Zn1–x CdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 2013, 3, 882–889.

    Article  Google Scholar 

  49. Xie, G. C.; Zhang, K.; Fang, H.; Gou, B. D.; Wang, R. Z.; Yan, H.; Fang, L.; Gong, J. R. A photoelectrochemical investigation on the synergetic effect between CdS and reduced graphene oxide for solar-energy conversion. Chem.—Asian J. 2013, 8, 2395–2400.

    Article  Google Scholar 

  50. Xie, G. C.; Zhang, K.; Gou, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839.

    Article  Google Scholar 

  51. Liang, L.; Lei, F. C.; Gao, S.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem., Int. Ed. 2015, 54, 13971–13974.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51372173, 21673160, and 51420105002), Natural Science Foundation of Zhejiang for Distinguished Young Scholars (No. LR16B010002), Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201409SIC), and startup funds of Syracuse University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dekun Ma, Weiwei Zheng or Shaoming Huang.

Electronic supplementary material

12274_2017_1473_MOESM1_ESM.pdf

Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chai, Y., Ma, D. et al. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 10, 2699–2711 (2017). https://doi.org/10.1007/s12274-017-1473-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1473-y

Keywords

Navigation