Skip to main content
Log in

Photophysical and electrical properties of organic waveguide nanorods of perylene-3,4,9,10-tetracarboxylic dianhydride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). We demonstrate that, unlike PTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S·m–1 (much higher than that of pure crystalline PTCDA films).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y. S.; Fu, H. B.; Hu, F. Q.; Peng, A. D.; Yang, W. S.; Yao, J. N. Tunable emission from binary organic onedimensional nanomaterials: An alternative approach to white-light emission. Adv. Mater. 2008, 20, 79–83.

    Article  Google Scholar 

  2. Peng, A. D.; Xiao, D. B.; Ma, Y.; Yang, W. S.; Yao, J. N. Tunable emission from doped 1,3,5-triphenyl-2-pyrazoline organic nanoparticles. Adv. Mater. 2005, 17, 2070–2073.

    Article  Google Scholar 

  3. Lim, S.-J.; An, B.-K.; Jung, S. D.; Chung, M.-A.; Park, S. Y. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angew. Chem., Int. Ed. 2004, 43, 6346–6350.

    Article  Google Scholar 

  4. Briseno, A. L.; Mannsfeld, S. C. B.; Lu, X. M.; Xiong, Y. J.; Jenekhe, S. A.; Bao, Z. N.; Xia, Y. N. Fabrication of fieldeffect transistors from hexathiapentacene single-crystal nanowires. Nano Lett. 2007, 7, 668–675.

    Article  Google Scholar 

  5. Kim, S.; Kwon, H.-J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S. et al. Low-power flexible organic light-emitting diode display device. Adv. Mater. 2011, 23, 3511–3516.

    Article  Google Scholar 

  6. Min, S.-Y.; Kim, T.-S.; Lee, Y.; Cho, H.; Xu, W. T.; Lee, T.-W. Organic nanowire fabrication and device applications. Small 2015, 11, 45–62.

    Article  Google Scholar 

  7. Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Xiao, D. B.; Yao, J. N. Low-dimensional nanomaterials based on small organic molecules: Preparation and optoelectronic properties. Adv. Mater. 2008, 20, 2859–2876.

    Article  Google Scholar 

  8. Nikolaenko, A. E.; Cass, M.; Bourcet, F.; Mohamad, D.; Roberts, M. Thermally activated delayed fluorescence in polymers: A new route toward highly efficient solution processable OLEDs. Adv. Mater. 2015, 27, 7236–7240.

    Article  Google Scholar 

  9. Vasilopoulou, M.; Douvas, A. M.; Georgiadou, D. G.; Constantoudis, V.; Davazoglou, D.; Kennou, S.; Palilis, L. C.; Daphnomili, D.; Coutsolelos, A. G.; Argitis, P. Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures. Nano Res. 2014, 7, 679–693.

    Article  Google Scholar 

  10. Choi, K.; Nam, S.; Lee, Y.; Lee, M.; Jang, J.; Kim, S. J.; Jeong, Y. J.; Kim, H.; Bae, S.; Yoo, J.-B. et al. Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors. ACS Nano 2015, 9, 5818–5824.

    Article  Google Scholar 

  11. Triet, N. M.; Trung, T. Q.; Hien, N. T. D.; Siddiqui, S.; Kim, D.-I.; Lee, J. C.; Lee, N.-E. A flexible magnetoelectric fieldeffect transistor with magnetically responsive nanohybrid gate dielectric layer. Nano Res. 2015, 8, 3421–3429.

    Article  Google Scholar 

  12. Homyak, P.; Liu, Y.; Liu, F.; Russel, T. P.; Coughlin, E. B. Systematic variation of fluorinated diketopyrrolopyrrole low bandgap conjugated polymers: Synthesis by direct arylation polymerization and characterization and performance in organic photovoltaics and organic field-effect transistors. Macromolecules 2015, 48, 6978–6986.

    Article  Google Scholar 

  13. Heutz, S.; Ferguson, A. J.; Rumbles, G.; Jones, T. S. Morphology, structure and photophysics of thin films of perylene-3,4,9,10-tetracarboxylic dianhydride. Org. Electron. 2002, 3, 119–127.

    Article  Google Scholar 

  14. Ferguson, A. J.; Jones, T. S. Photophysics of PTCDA and Me-PTCDI thin films: Effects of growth temperature. J. Phys. Chem. B 2006, 110, 6891–6898.

    Article  Google Scholar 

  15. Lovinger, A. J.; Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H.; Venkatesan, T. Structural and morphological investigation of the development of electrical conductivity in ion-irradiated thin films of an organic material. J. Appl. Phys. 1984, 55, 476–482.

    Article  Google Scholar 

  16. Zang, D. Y.; So, F. F.; Forrest, S. R. Giant anisotropies in the dielectric properties of quasi-epitaxial crystalline organic semiconductor thin films. Appl. Phys. Lett. 1991, 59, 823–825.

    Article  Google Scholar 

  17. Zhao, Y. S.; Di, C.; Yang, W.; Yu, G.; Liu, Y.; Yao, J. Photoluminescence and electroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater. 2006, 16, 1985–1991.

    Article  Google Scholar 

  18. Han, Y. Y.; Ning, W.; Du, H. F.; Yang, J. Y.; Wang, N.; Cao, L.; Li, F.; Zhang, F. P.; Xu, F. Q.; Tian, M. L. Preparation, optical and electrical properties of PTCDA nanostructures. Nanoscale 2015, 7, 17116–17121.

    Article  Google Scholar 

  19. Cao, L.; Wang, Y.-Z.; Zhong, J.-Q.; Han, Y.-Y.; Zhang, W.-H.; Yu, X.-J.; Xu, F.-Q.; Qi, D.-C.; Wee, A. T. S. Molecular orientation and site dependent charge transfer dynamics at PTCDA/TiO2(110) interface revealed by resonant photoemission spectroscopy. J. Phys. Chem. C 2014, 118, 4160–4166.

    Article  Google Scholar 

  20. Cao, L.; Wang, Y. Z.; Zhong, J. Q.; Han, Y. Y.; Zhang, W. H.; Yu, X. J.; Xu, F. Q.; Qi, D.-C.; Wee, A. T. S. Electronic structure, chemical interactions and molecular orientations of 3,4,9,10-perylene-tetracarboxylic-dianhydride on TiO2(110). J. Phys. Chem. C 2011, 115, 24880–24887.

    Article  Google Scholar 

  21. Chkoda, L.; Heske, C.; Sokolowski, M.; Umbach, E. Improved band alignment for hole injection by an interfacial layer in organic light emitting devices. Appl. Phys. Lett. 2000, 77, 1093–1095.

    Article  Google Scholar 

  22. Chu, X. B.; Guan, M.; Li, L. S.; Zhang, Y.; Zhang, F.; Li, Y. Y.; Zhu, Z. P.; Wang, B. Q.; Zeng, Y. P. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization. ACS Appl. Mater. Interfaces 2012, 4, 4976–4980.

    Article  Google Scholar 

  23. Zhao, Y. S.; Zhan, P.; Kim, J.; Sun, C.; Huang, J. X. Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano 2010, 4, 1630–1636.

    Article  Google Scholar 

  24. Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Optical waveguide self-assembled from organic dye molecules in solution. Nano Lett. 2005, 5, 1293–1296.

    Article  Google Scholar 

  25. Hoffmann, M.; Schmidt, K.; Fritz, T.; Hasche, T.; Agranovich, V. M.; Leo, K. The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: Application to MePTCDI and PTCDA crystals. Chem. Phys. 2000, 258, 73–96.

    Article  Google Scholar 

  26. Wagner, H. P.; DeSilva, A.; Kampen, T. U. Exciton emission in PTCDA films and PTCDA/Alq3 multilayers. Phys. Rev. B 2004, 70, 235201.

    Article  Google Scholar 

  27. Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; DeSilva, L. A. A.; Gisslén, L.; Scholz, R. Selective excitation of exciton transitions in PTCDA crystals and films. Phys. Rev. B 2010, 81, 155208.

    Article  Google Scholar 

  28. Du, Y.; Cai, W. L.; Mo, C. M.; Chen, J.; Zhang, L. D.; Zhu, X. G. Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 1999, 74, 2951–2953.

    Article  Google Scholar 

  29. Sun, X. Y.; Xu, F. Q.; Li, Z. M.; Zhang, W. H. Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays. J. Lumines. 2006, 121, 588–594.

    Article  Google Scholar 

  30. Schlettwein, D.; Back, A.; Schilling, B.; Fritz, T.; Armstrong, N. R. Ultrathin films of perylenedianhydride and perylenebis(dicarboximide) dyes on (001) alkali halide surfaces. Chem. Mater. 1998, 10, 601–612.

    Article  Google Scholar 

  31. Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z. et al. High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. J. Am. Chem. Soc 2009, 131, 6215–6228.

    Article  Google Scholar 

  32. Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H.; Venkatesan, T.; Lovinger, A. J. Large conductivity changes in ion beam irradiated organic thin films. Appl. Phys. Lett. 1982, 41, 708–710.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faqiang Xu or Mingliang Tian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Ning, W., Cao, L. et al. Photophysical and electrical properties of organic waveguide nanorods of perylene-3,4,9,10-tetracarboxylic dianhydride. Nano Res. 9, 1948–1955 (2016). https://doi.org/10.1007/s12274-016-1086-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1086-x

Keywords

Navigation