Skip to main content
Log in

Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanodots (CDs) formed by hydrothermal dehydration occur as mixtures of differently sized nanoparticles with different degrees of carbonization. Common ultracentrifugation has failed in sorting them, owing to their extremely high colloidal stability. Here, we introduce an ultracentrifugation method using a hydrophilicity gradient to sort such non-sedimental CDs. CDs, synthesized from citric acid and ethylenediamine, were pre-treated by acetone to form clusters. Such clusters “de-clustered” as they were forced to sediment through media comprising gradients of ethanol and water with varied volume ratios. Primary CDs with varied sizes and degrees of carbonization detached from the clusters to become well dispersed in the corresponding gradient layers. Their settling level was highly dependent on the varied hydrophilicity and solubility of the environmental media. Thus, the proposed hydrophilicity-triggered sorting strategy could be used for other nanoparticles with extremely high colloidalstability, which further widens the range of sortable nanoparticles. Furthermore, according to careful analysis of the changes in size, composition, quantum yield, and transient fluorescence of typical CDs in the post-separation fractions, it was concluded that the photoluminescence of the as-prepared hydrothermal carbonized CDs mainly arose from the particles’ surface molecular state rather than their sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  Google Scholar 

  2. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  3. Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots:Synthesis, properties and a pplications. J. Mater. Chem. 2012, 22, 24230–24253.

    Article  Google Scholar 

  4. Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivobioimaging. Acc. Chem. Res. 2014, 47, 20–30.

    Article  Google Scholar 

  5. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  Google Scholar 

  6. Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbonnanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551.

    Article  Google Scholar 

  7. Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J.L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocataly stdesign. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.

    Article  Google Scholar 

  8. Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S.H.; Zheng, H. Z.; Huang, Y. M. Carbon nanodots asperoxidase mimetics and their applications to glucosedetection. Chem. Commun. 2011, 47, 6695–6697.

    Article  Google Scholar 

  9. Choi, H.; Ko, S. J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J. W.; Choi, H. J.; Cha, M.; Jeong, J. R. et al. Versatilesurface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 2013, 7, 732–738.

    Article  Google Scholar 

  10. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y.B.; Jin, H.; Zhang, K.; Sun, H. B.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning,sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  11. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    Article  Google Scholar 

  12. Jiang, H. Q.; Chen, F.; Lagally, M. G.; Denes, F. S. Newstrategy for synthesis and functionalization of carbonnano particles. Langmuir 2010, 26, 1991–1995.

    Article  Google Scholar 

  13. Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticlesderived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473–6475.

    Article  Google Scholar 

  14. Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenicdots. Chem. Mater. 2008, 20, 4539–4541.

    Article  Google Scholar 

  15. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.

    Article  Google Scholar 

  16. Lingam, K.; Podila, R.; Qian, H. J.; Serkiz, S.; Rao, A. M. Evidence for edge-state photoluminescence in graphene quantum dots. Adv. Funct. Mater. 2013, 23, 5062–5065.

    Article  Google Scholar 

  17. Wang, L.; Zhu, S. J.; Wang, H. Y.; Qu, S. N.; Zhang, Y. L.; Zhang, J. H.; Chen, Q. D.; Xu, H. L.; Han, W.; Yang, B. et al. Common origin of green luminescence in carbon nanodotsand graphene quantum dots. ACS Nano 2014, 8, 2541–2547.

    Article  Google Scholar 

  18. Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbondots using silica spheres as carriers. Angew. Chem., Int. Ed. 2009, 48, 4598–4601.

    Article  Google Scholar 

  19. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronicstructure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  Google Scholar 

  20. Bai, L.; Ma, X. J.; Liu, J. F.; Sun, X. M.; Zhao, D. Y.; Evans, D. G. Rapid separation and purification of nanoparticlesin organic density gradients. J. Am. Chem. Soc. 2010, 132, 2333–2337.

    Article  Google Scholar 

  21. Mastronardi, M. L.; Hennrich, F.; Henderson, E. J.; Maier-Flaig, F.; Blum, C.; Reichenbach, J.; Lemmer, U.; Kübel, C.; Wang, D.; Kappes, M. M. et al. Preparation of monodispersesilicon nanocrystals using density gradient ultracentrifugation. J. Am. Chem. Soc. 2011, 133, 11928–11931.

    Article  Google Scholar 

  22. Ma, X. J.; Kuang, Y.; Bai, L.; Chang, Z.; Wang, F.; Sun, X.M.; Evans, D. G. Experimental and mathematical modelingstudies of the separation of zinc blende and wurtzite phasesof CdS nanorods by density gradient ultracentrifugation. ACS Nano 2011, 5, 3242–3249.

    Article  Google Scholar 

  23. Zhang, C. L.; Luo, L.; Luo, J.; Evans, D. G.; Sun, X. M. Aprocess-analysis microsystem based on density gradientcentrifugation and its application in the study of thegalvanic replacement mechanism of Ag nanoplates with HAu Cl4. Chem. Commun. 2012, 48, 7241–7243.

    Article  Google Scholar 

  24. Song, S.; Kuang, Y.; Liu, J. F.; Yang, Q.; Luo, L.; Sun, X. M. Separation and phase transition investigation of Yb3+/Er3+co-doped NaYF4 nanoparticles. Dalton Trans. 2013, 42, 13315–13318.

    Article  Google Scholar 

  25. Horn, D.; Rieger, J. Organic nanoparticles in the aqueousphase—theory, experiment, and use. Angew. Chem., Int. Ed. 2001, 40, 4330–4361.

    Article  Google Scholar 

  26. Aubry, J.; Ganachaud, F.; Addad, J. P. C.; Cabane, B. Nanoprecipitation of polymethylmethacry late by solvent shifting: 1. Boundaries. Langmuir 2009, 25, 1970–1979.

    Article  Google Scholar 

  27. Zheng, M.; Xie, Z. G.; Qu, D.; Li, D.; Du, P.; Jing, X. B.; Sun, Z. C. On-off-on fluorescent carbon dot nanosensor forrecognition of chromium(VI) and ascorbic acid based onthe inner filter effect. ACS Appl. Mater. Inter. 2013, 5, 13242–13247.

    Article  Google Scholar 

  28. Song, Y. B.; Zhu, S. J.; Xiang, S. Y.; Zhao, X. H.; Zhang, J. H.; Zhang, H.; Fu, Y.; Yang, B. Investigation into thefluorescence quenching behaviors and applications of carbondots. Nanoscale 2014, 6, 4676–4682.

    Article  Google Scholar 

  29. Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponsein layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.

    Article  Google Scholar 

  30. Wei, W. L.; Xu, C.; Wu, L.; Wang, J. S.; Ren, J. S.; Qu, X. G. Non-enzymatic-browning-reaction: A versatile route forproduction of nitrogen-doped carbon dots with tunablemulticolor luminescent display. Sci. Rep. 2014, 4, 3564.

    Google Scholar 

  31. Li, W.; Zhang, Z. H.; Kong, B.; Feng, S. S.; Wang, J. X.; Wang, L. Z.; Yang, J. P.; Zhang, F.; Wu, P. Y.; Zhao, D. Y. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem., Int. Ed. 2013, 52, 8151–8155.

    Article  Google Scholar 

  32. Wang, X. Y.; Qu, L. H.; Zhang, J. Y.; Peng, X. G.; Xiao, M. Surface-related emission in highly luminescent CdSequantum dots. Nano Lett. 2003, 3, 1103–1106.

    Article  Google Scholar 

  33. Zhao, K.; Li, J.; Wang, H. Z.; Zhuang, J. Q.; Yang, W. S. Stoichiometric ratio dependent photoluminescence quantumyields of the thiol capping CdTe nanocrystals. J. Phys.Chem. C 2007, 111, 5618–5621.

    Article  Google Scholar 

  34. Huang, L. W.; Liao, Q.; Shi, Q.; Fu, H. B.; Ma, J. S.; Yao, J.N. Rubrene micro-crystals from solution routes: Their crystallography, morphology and optical properties. J. Mater.Chem. 2010, 20, 159–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Luo or Xiaoming Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Wang, X., Kuang, Y. et al. Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 8, 2810–2821 (2015). https://doi.org/10.1007/s12274-015-0786-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0786-y

Keywords

Navigation