Skip to main content
Log in

Towards active plasmonic response devices

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brongersma, M. L.; Shalaev, V. M. The case for plasmonics. Science 2010, 328, 440–441.

    Article  Google Scholar 

  2. Zia, R.; Schuller, J. A.; Chandran, A.; Brongersma, M. L. Plasmonics: The next chip-scale technology. Mater. Today 2006, 9, 20–27.

    Article  Google Scholar 

  3. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.

    Article  Google Scholar 

  4. Odom, T. W.; Schatz, G. C. Introduction to plasmonics. Chem. Rev. 2011, 111, 3667–3668.

    Article  Google Scholar 

  5. Jiang, L.; Zhang, H. X.; Zhuang, J. Q.; Yang, B. Q.; Yang, W. S.; Li, T. J.; Sun, C. C. Sterically mediated two-dimensional architectures in aggregates of Au nanoparticles directed by phosphorothioate oligonucleotide-DNA. Adv. Mater. 2005, 17, 2066–2070.

    Article  Google Scholar 

  6. Lacroix, J. C.; Martin, P.; Randriamahazaka, H. Active Nanoantenna System. In Encyclopedia of Nanotechnology. Bhushan, B., Ed.; Springer: Berlin, 2012; pp 56–69.

    Google Scholar 

  7. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. R.; Zou, S. L. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 2005, 30, 368–375.

    Article  Google Scholar 

  8. Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

    Article  Google Scholar 

  9. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  Google Scholar 

  10. Liu, Y.; Yin, J.-J.; Nie, Z. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719–1730.

    Article  Google Scholar 

  11. Jiang, L.; Zou, C. J.; Zhang, D. H.; Sun, Y. H.; Jiang, Y. Y.; Leow, W. R.; Liedberg, B.; Li, S. Z.; Chen, X. D. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small 2013, 10, 609–614.

    Article  Google Scholar 

  12. Li, L.; Steiner, U.; Mahajan, S. Single Nanoparticle SERS probes of ion intercalation in metal-oxide electrodes. Nano Lett. 2014, 14, 495–498.

    Article  Google Scholar 

  13. Wu, H.; Wang, P.; He, H.; Jin, Y. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

    Article  Google Scholar 

  14. Zhu, K.; Wang, D.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1–29.

    Article  Google Scholar 

  15. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 865–865.

    Article  Google Scholar 

  16. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  Google Scholar 

  17. Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706.

    Article  Google Scholar 

  18. Berthelot, J.; Bouhelier, A.; Huang, C.; Margueritat, J.; Colas-des-Francs, G.; Finot, E.; Weeber, J. C.; Dereux, A.; Kostcheev, S.; Ahrach, H. I. E.; et al. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett. 2009, 9, 3914–3921.

    Article  Google Scholar 

  19. Liu, N.; Wen, F.; Zhao, Y.; Wang, Y.; Nordlander, P.; Halas, N. J.; Alù, A. Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 2012, 13, 142–147.

    Article  Google Scholar 

  20. Xie, F.; Pang, J.; Centeno, A.; Ryan, M.; Riley, D. J.; Alford, N. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 2013, 6, 496–510.

    Article  Google Scholar 

  21. Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607–616.

    Article  Google Scholar 

  22. Zheng, Y. B.; Kiraly, B.; Cheunkar, S.; Huang, T. J.; Weiss, P. S. Incident-angle-modulated molecular plasmonic switches: A case of weak exciton-plasmon coupling. Nano. Lett. 2011, 11, 2061–2065.

    Article  Google Scholar 

  23. Zheng, Y. B.; Yang, Y. W.; Jensen, L.; Fang, L.; Juluri, B. K.; Flood, A. H.; Weiss, P. S.; Stoddart, J. F.; Huang, T. J. Active molecular plasmonics: Controlling plasmon resonances with molecular switches. Nano Lett. 2009, 9, 819–825.

    Article  Google Scholar 

  24. Pacifici, D.; Lezec, H. J.; Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 2007, 1, 402–406.

    Article  Google Scholar 

  25. Leroux, Y.; Lacroix, J. C.; Fave, C.; Stockhausen, V.; Félidj, N.; Grand, J.; Hohenau, A.; Krenn, J. R. Active plasmonic devices with anisotropic optical response: A step toward active polarizer. Nano Lett. 2009, 9, 2144–2148.

    Article  Google Scholar 

  26. Khatua, S.; Chang, W. S.; Swanglap, P.; Olson, J.; Link, S. Active modulation of nanorod plasmons. Nano Lett. 2011, 11, 3797–3802.

    Article  Google Scholar 

  27. Jiang, L.; Sun, Y. H.; Huo, F. W.; Zhang, H.; Qin, L. D.; Li, S. Z.; Chen, X. D. Free-standing one-dimensional plasmonic nanostructures. Nanoscale 2012, 4, 66–75.

    Article  Google Scholar 

  28. Jiang, L.; Sun, Y.; Nowak, C.; Kibrom, A.; Zou, C.; Ma, J.; Fuchs, H.; Li, S.; Chi, L.; Chen, X. Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 2011, 5, 8288–8294.

    Article  Google Scholar 

  29. Hafner, J. H.; Nordlander, P.; Weiss, P. S. Virtual issue on plasmonics. ACS Nano 2011, 5, 4245–4248.

    Article  Google Scholar 

  30. Halas, N. J. Plasmonics: An emerging field fostered by nano letters. Nano Lett. 2010, 10, 3816–3822.

    Article  Google Scholar 

  31. Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

    Article  Google Scholar 

  32. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  Google Scholar 

  33. Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819.

    Article  Google Scholar 

  34. Moores, A.; Goettmann, F. The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 2006, 30, 1121–1132.

    Article  Google Scholar 

  35. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

    Article  Google Scholar 

  36. Link, S.; El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453.

    Article  Google Scholar 

  37. Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Article  Google Scholar 

  38. Zhu, X.; Shi, L.; Liu, X.; Zi, J.; Wang, Z. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 2010, 3, 807–812.

    Article  Google Scholar 

  39. Jiang, L.; Tang, Y. X.; Liow, C. H.; Wu, J. S.; Sun, Y. H.; Jiang, Y. Y.; Dong, Z. L.; Li, S. Z.; Dravid, V. P.; Chen, X. D. Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. Small 2013, 9, 705–710.

    Article  Google Scholar 

  40. Jiang, L.; Wang, W. C.; Fuchs, H.; Chi, L. F. One-dimensional arrangement of gold nanoparticles with tunable interparticle distance. Small 2009, 5, 2819–2822.

    Article  Google Scholar 

  41. Xu, G.; Tazawa, M.; Jin, P.; Nakao, S.; Yoshimura, K. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 2003, 82, 3811–3813.

    Article  Google Scholar 

  42. Erdem, T.; Soran-Erdem, Z.; Hernandez-Martinez, P.; Sharma, V.; Akcali, H.; Akcali, I.; Gaponik, N.; Eychmüller, A.; Demir, H. Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Res. 2014, in press, DOI: 10.1007/s12274-014-0568-y.

    Google Scholar 

  43. Si, G.; Zhao, Y.; Leong, E. S. P.; Liu, Y. J. Liquid-crystal-enabled active plasmonics: A review. Materials 2014, 7, 1296–1317.

    Article  Google Scholar 

  44. Tokarev, I.; Minko, S. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter 2012, 8, 5980–5987.

    Article  Google Scholar 

  45. Suh, J. Y.; Donev, E. U.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Modulated optical transmission of subwavelength hole arrays in metal-VO2 films. Appl. Phys. Lett. 2006, 88, 133115.

    Article  Google Scholar 

  46. Dintinger, J.; Klein, S.; Ebbesen, T. W. Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching. Adv. Mater. 2006, 18, 1267–1270.

    Article  Google Scholar 

  47. Chu, K. C.; Chao, C. Y.; Chen, Y. F.; Wu, Y. C.; Chen, C. C. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl. Phys. Lett. 2006, 89, 103107.

    Article  Google Scholar 

  48. Chen, C. T.; Liu, C. C.; Wang, C. H.; Chen, C. W.; Chen, Y. F. Tunable coupling between exciton and surface plasmon in liquid crystal devices consisting of Au nanoparticles and CdSe quantum dots. Appl. Phys. Lett. 2011, 98, 261918.

    Article  Google Scholar 

  49. Kossyrev, P. A.; Yin, A.; Cloutier, S. G.; Cardimona, D. A.; Huang, D.; Alsing, P. M.; Xu, J. M. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005, 5, 1978–1981.

    Article  Google Scholar 

  50. Dickson, W.; Wurtz, G. A.; Evans, P. R.; Pollard, R. J.; Zayats, A. V. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 2008, 8, 281–286.

    Article  Google Scholar 

  51. Jun, Y. C. Electrically-driven active plasmonic devices. In Plasmonics-Principles and Applications. Kim, K. Y., Ed.; InTech: Croatia, 2012; pp 385–400.

    Google Scholar 

  52. De Sio, L.; Klein, G.; Serak, S.; Tabiryan, N.; Cunningham, A.; Tone, C. M.; Ciuchi, F.; Burgi, T.; Umeton, C.; Bunning, T. All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals. J. Mate. Chem. C 2013, 1, 7483–7487.

    Article  Google Scholar 

  53. Liu, Q.; Tang, J.; Zhang, Y.; Martinez, A.; Wang, S.; He, S.; White, T. J.; Smalyukh, I. I. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals. Phys. Rev. E 2014, 89, 052505.

    Article  Google Scholar 

  54. De Sio, L.; Placido, T.; Serak, S.; Comparelli, R.; Tamborra, M.; Tabiryan, N.; Curri, M. L.; Bartolino, R.; Umeton, C.; Bunning, T. Nano-localized heating source for photonics and plasmonics. Adv. Opt. Mater. 2013, 1, 899–904.

    Article  Google Scholar 

  55. Olson, J.; Swanglap, P.; Chang, W. S.; Khatua, S.; Solis, D.; Link, S. Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons. Phys. Chem. Chem. Phys. 2013, 15, 4195–4204.

    Article  Google Scholar 

  56. Hsiao, V. K. S.; Zheng, Y. B.; Juluri, B. K.; Huang, T. J. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater. 2008, 20, 3528–3532.

    Article  Google Scholar 

  57. Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Xiang, N.; Danner, A. J.; Teng, J. H. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv. Mater. 2012, 24, OP131–OP135.

    Google Scholar 

  58. Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 2014, 136, 4788–4793.

    Article  Google Scholar 

  59. Jiang, L.; Wang, X.; Chi, L. Nanoscaled surface patterning of conducting polymers. Small 2011, 7, 1309–1321.

    Article  Google Scholar 

  60. Baba, A.; Tada, K.; Janmanee, R.; Sriwichai, S.; Shinbo, K.; Kato, K.; Kaneko, F.; Phanichphant, S. Controlling surface plasmon optical transmission with an electrochemical switch using conducting polymer thin films. Adv. Funct. Mater. 2012, 22, 4383–4388.

    Article  Google Scholar 

  61. Leroux, Y. R.; Lacroix, J. C.; Chane-Ching, K. I.; Fave, C.; Félidj, N.; Lévi, G.; Aubard, J.; Krenn, J. R.; Hohenau, A. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc. 2005, 127, 16022–16023.

    Article  Google Scholar 

  62. Stockhausen, V.; Martin, P.; Ghilane, J.; Leroux, Y.; Randriamahazaka, H.; Grand, J.; Felidj, N.; Lacroix, J. C. Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. J. Am. Chem. Soc. 2010, 132, 10224–10226.

    Article  Google Scholar 

  63. Leroux, Y.; Lacroix, J. C.; Fave, C.; Trippe, G.; Félidj, N.; Aubard, J.; Hohenau, A.; Krenn, J. R. Tunable electrochemical switch of the optical properties of metallic nanoparticles. ACS Nano 2008, 2, 728–732.

    Article  Google Scholar 

  64. Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26, 3282–3289.

    Article  Google Scholar 

  65. Gehan, H. l. n.; Mangeney, C.; Aubard, J.; Lévi, G.; Hohenau, A.; Krenn, J. R.; Lacaze, E.; Félidj, N. Design and optical properties of active polymer-coated plasmonic nanostructures. J. Phys. Chem. Lett. 2011, 2, 926–931.

    Article  Google Scholar 

  66. Han, X.; Liu, Y.; Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 2014, 14, 2466–2470.

    Article  Google Scholar 

  67. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237.

    Article  Google Scholar 

  68. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Article  Google Scholar 

  69. Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.

    Article  Google Scholar 

  70. Wurtz, G. A.; Evans, P. R.; Hendren, W.; Atkinson, R.; Dickson, W.; Pollard, R. J.; Zayats, A. V.; Harrison, W.; Bower, C. Molecular plasmonics with tunable excitonplasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 2007, 7, 1297–1303.

    Article  Google Scholar 

  71. Ming, T.; Zhao, L.; Xiao, M.; Wang, J. Resonance-coupling-based plasmonic switches. Small 2010, 6, 2514–2519.

    Article  Google Scholar 

  72. Haes, A. J.; Zou, S.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 2006, 128, 10905–10914.

    Article  Google Scholar 

  73. Zhao, J.; Das, A.; Zhang, X.; Schatz, G. C.; Sligar, S. G.; Van Duyne, R. P. Resonance surface plasmon spectroscopy: Low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc. 2006, 128, 11004–11005.

    Article  Google Scholar 

  74. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 2007, 129, 7647–7656.

    Article  Google Scholar 

  75. Schlather, A. E.; Large, N.; Urban, A. S.; Nordlander, P.; Halas, N. J. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286.

    Article  Google Scholar 

  76. Morin, F. J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 1959, 3, 34–36.

    Article  Google Scholar 

  77. Driscoll, T.; Palit, S.; Qazilbash, M. M.; Brehm, M.; Keilmann, F.; Chae, B.-G.; Yun, S.-J.; Kim, H.-T.; Cho, S. Y.; Jokerst, N. M.; et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 2008, 93, 024101.

    Article  Google Scholar 

  78. Donev, E. U.; Suh, J. Y.; Villegas, F.; Lopez, R.; Haglund, R. F.; Feldman, L. C. Optical properties of subwavelength hole arrays in vanadium dioxide thin films. Phys. Rev. B 2006, 73, 201401.

    Article  Google Scholar 

  79. Dicken, M. J.; Aydin, K.; Pryce, I. M.; Sweatlock, L. A.; Boyd, E. M.; Walavalkar, S.; Ma, J.; Atwater, H. A. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 2009, 17, 18330–18339.

    Article  Google Scholar 

  80. Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J. Appl. Phys. 2004, 96, 1209–1213.

    Article  Google Scholar 

  81. Wei, J.; Wang, Z.; Chen, W.; Cobden, D. H. New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. 2009, 4, 420–424.

    Article  Google Scholar 

  82. Ferrara, D. W.; Nag, J.; MacQuarrie, E. R.; Kaye, A. B.; Haglund, R. F. Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide. Nano Lett. 2013, 13, 4169–4175.

    Article  Google Scholar 

  83. Zhou, H.; Cao, X.; Jiang, M.; Bao, S.; Jin, P. Surface plasmon resonance tunability in VO2/Au/VO2 thermochromic structure. Laser Photonics Rev. 2014, 8, 617–625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Jiang or Xiaodong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Jiang, L., Zhong, L. et al. Towards active plasmonic response devices. Nano Res. 8, 406–417 (2015). https://doi.org/10.1007/s12274-014-0682-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0682-x

Keywords

Navigation