Skip to main content
Log in

A review of self-assembled monolayers as potential terahertz frequency tunnel diodes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this review, we describe the principles of the tunnel junction, self-assembled monolayer (SAM) application techniques, experimental testbed fabrication, and characterization of the films and devices. In addition, techniques for directed application, removal, and functionalization of the monolayers are discussed. Bottom-up fabrication techniques have seen increased attention because of their versatility and ease of use. These films see mechanical uses as surface modifiers and micro-scale lubricants. Advances in nanowatt electronics and ultra-low power sensors have opened up an energy harvesting niche for solutions which would have proven ineffective just some years ago. The focus of this study is the two-terminal junction which has potential applications in THz rectification for energy harvesting, medical imaging, and defense sensing. The quantum theory of operation behind these devices is touched on briefly—describing tunneling through the organic monolayers. Commentary on trends in research and potential future work are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–279.

    Google Scholar 

  2. Schreiber, F. Structure and growth of self-assembling monolayers. Progress in Surface Science 2000, 65, 151–257.

    Google Scholar 

  3. Lio, A.; Charych, D. H.; Salmeron, M. Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. The Journal of Physical Chemistry B 1997, 101, 3800–3805.

    Google Scholar 

  4. Schilardi, P. L.; Dip, P.; dos Santos Claro, P. C.; Benítez, G. A.; Fonticelli, M. H.; Azzaroni, O.; Salvarezza, R. C. Electrochemical deposition onto self-assembled monolayers: New insights into micro- and nanofabrication. Chemistry—A European Journal 2006, 12, 38–49.

    Google Scholar 

  5. Song, Y.; Nair, R.; Zou, M.; Wang, Y. Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano Res. 2009, 2, 143–150.

    Google Scholar 

  6. Azzaroni, O.; Cipollone, M.; Vela, M. E.; Salvarezza, R. C. Protective properties of dodecanethiol layers on copper surfaces: The effect of chloride anions in aqueous environments. Langmuir 2001, 17, 1483–1487.

    Google Scholar 

  7. Madou, M. J. Fundamentals of Microfabrication; CRC Press: New York, 2002.

    Google Scholar 

  8. Langmuir, I. The mechanism of the surface phenomena of flotation. Transactions of the Faraday Society 1920, 15, 62–74.

    Google Scholar 

  9. Fischer, C. M.; Burghard, M.; Roth, S.; Vonklitzing, K. Microstructured gold Langmuir-Blodgett film gold tunneling junctions. Applied Physics Letters 1995, 66, 3331–3333.

    Google Scholar 

  10. Huesgen, T.; Woias, P.; Kockmann, N. Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens. Actuator A-Phys. 2008, 145, 423–429.

    Google Scholar 

  11. Dragoman, D.; Dragoman, M. Giant thermoelectric effect in graphene. Applied Physics Letters 2007, 91, 203116.

    Google Scholar 

  12. Goswami, D. Y.; Vijayaraghavan, S.; Lu, S.; Tamm, G. New and emerging developments in solar energy. Solar Energy 2004, 76, 33–43.

    Google Scholar 

  13. Krishnan, S.; La Rosa, H.; Stefanakos, E.; Bhansali, S.; Buckle, K. Design and development of batch fabricatable metal-insulator-metal diode and microstrip slot antenna as rectenna elements. Sensors and Actuators A-Physical 2008, 142, 40–47.

    Google Scholar 

  14. Corkish, R.; Green, M. A.; Puzzer, T. Solar energy collection by antennas. Sol. Energy 2002, 73, 395–401.

    Google Scholar 

  15. Paing, T.; Falkenstein, E.; Zane, R.; Popovic, Z. Custom IC for ultra-low power RF energy harvesting. In Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, 2009; pp 1239–1245.

    Google Scholar 

  16. Hagerty, J. A.; Zhao, T.; Zane, R.; Popovic, Z. Efficient broadband RF energy harvesting for wireless sensors. 2005, 1–4.

    Google Scholar 

  17. Brown, W. C. The History of power transmission by radio-waves. Ieee Transactions on Microwave Theory and Techniques 1984, 32, 1230–1242.

    Google Scholar 

  18. Hagerty, J. A.; Helmbrecht, F. B.; McCalpin, W. H.; Zane, R.; Popovic, Z. B. Recycling ambient microwave energy with broad-band rectenna arrays. Ieee Transactions on Microwave Theory and Techniques 2004, 52, 1014–1024.

    Google Scholar 

  19. Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654.

    Google Scholar 

  20. Chen, H. M.; Varshney, P. K. Automatic two-stage IR and MMW image registration algorithm for concealed weapons detection. IEEE Proc.-Vis. Image Signal Process. 2001, 148, 209–216.

    Google Scholar 

  21. Federici, J. F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280.

    Google Scholar 

  22. Richards, P. L. Bolometers for infrared and millimeter waves. Journal of Applied Physics 1994, 76, 1–24.

    Google Scholar 

  23. Grover, S.; Dmitriyeva, O.; Estes, M. J.; Moddel, G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotechnol. 2010, 9, 716–722.

    Google Scholar 

  24. Siebert, K. J.; Quast, H.; Leonhardt, R.; Loffler, T.; Thomson, M.; Bauer, T.; Roskos, H. G.; Czasch, S. Continuous-wave all-optoelectronic terahertz imaging. Applied Physics Letters 2002, 80, 3003–3005.

    Google Scholar 

  25. Tiwari, B.; Bean, J. A.; Szakmany, G.; Bernstein, G. H.; Fay, P.; Porod, W. Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. Journal of Vacuum Science & Technology B 2009, 27, 2153–2160.

    Google Scholar 

  26. Wu, Q.; Hewitt, T. D.; Zhang, X. C. Two-dimensional electrooptic imaging of THz beams. Applied Physics Letters 1996, 69, 1026–1028.

    Google Scholar 

  27. Lee, A. W. M.; Qin, Q.; Kumar, S.; Williams, B. S.; Hu, Q. Real-time terahertz imaging over a standoff distance (> 25 meters). Applied Physics Letters 2006, 89, 141125.

    Google Scholar 

  28. Mickan, S. P.; Menikh, A.; Liu, H. B.; Mannella, C. A.; MacColl, R.; Abbott, D.; Munch, J.; Zhang, X. C. Label-free bioaffinity detection using terahertz technology. Phys. Med. Biol. 2002, 47, 3789–3795.

    Google Scholar 

  29. Huang, S. Y.; Wang, Y. X. J.; Wyeung, D. K.; Ahuja, A. T.; Zhang, Y. T.; Pickwell-MacPherson, E. Tissue characterization using terahertz pulsed imaging in reflection geometry. Phys. Med. Biol. 2009, 54, 149–160.

    Google Scholar 

  30. Yasuda, T.; Yasui, T.; Araki, T.; Abraham, E. Real-time two-dimensional terahertz tomography of moving objects. Opt. Commun. 2006, 267, 128–136.

    Google Scholar 

  31. Reid, C. B.; Fitzgerald, A.; Reese, G.; Goldin, R.; Tekkis, P.; O’Kelly, P. S.; Pickwell-MacPherson, E.; Gibson, A. P.; Wallace, V. P. Terahertz pulsed imaging of freshly excised human colonic tissues. Phys. Med. Biol. 2011, 56, 4333–4353.

    Google Scholar 

  32. Dabiri, A.; Motamedi, M. Method for non-invasive cancerous tissue diagnosis and tomography using terahertz imaging. 2011, 1–8.

    Google Scholar 

  33. Wallace, V. P.; Taday, P. F.; Fitzgerald, A. J.; Woodward, R. M.; Cluff, J.; Pye, R. J.; Arnone, D. D. Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications. Faraday Discussions 2004, 126, 255–263.

    Google Scholar 

  34. Heath, J. R. Molecular Electronics. Annual Review of Materials Research 2009, 39, 1–23.

    Google Scholar 

  35. Nuzzo, R. G.; Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105, 4481–4483.

    Google Scholar 

  36. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. Spontaneously organized molecular assemblies. 4. structural characterization of n -alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 1987, 109, 3559–3568.

    Google Scholar 

  37. Bain, C. D.; Whitesides, G. M. Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 1988, 240, 62–63.

    Google Scholar 

  38. Leung, T. Y. B.; Gerstenberg, M. C.; Lavrich, D. J.; Scoles, G. 1,6-hexanedithiol monolayers on Au(111): A multitechnique structural study. Langmuir 2000, 16, 549–561.

    Google Scholar 

  39. Vericat, C.; Vela, M. E.; Benitez, G. A.; Gago, J. A. M.; Torrelles, X.; Salvarezza, R. C. Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111). Journal of Physics: Condensed Matter 2006, 18, R867–877.

    Google Scholar 

  40. Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society 1991, 113, 7152–7167.

    Google Scholar 

  41. Rusu, P. C.; Giovannetti, G.; Brocks, G. Dipole formation at interfaces of alkanethiolate self-assembled monolayers and Ag(111). The Journal of Physical Chemistry C 2007, 111, 14448–14456.

    Google Scholar 

  42. Weiss, E. A.; Chiechi, R. C.; Kaufman, G. K.; Kriebel, J. K.; Li, Z.; Duati, M.; Rampi, M. A.; Whitesides, G. M. Influence of defects on the electrical characteristics of mercury-drop junctions: Self-assembled monolayers of n-Alkanethiolates on rough and smooth silver. Journal of the American Chemical Society 2007, 129, 4336–4349.

    Google Scholar 

  43. Walczak, M. M.; Chung, C.; Stole, S. M.; Widrig, C. A.; Porter, M. D. Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces. Journal of the American Chemical Society 1991, 113, 2370–2378.

    Google Scholar 

  44. Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G. Comparison of the structures and wetting properties of self-assembled monolayers of n -alkanethiol on the coinage metal surfaces, Cu, Ag, Au. J. Am. Chem. Soc. 1991, 113, 7152–7167.

    Google Scholar 

  45. Chang, S.-C.; Li, Z.; Lau, C. N.; Larade, B.; Williams, R. S. Investigation of a model molecular-electronic rectifier with an evaporated Ti-metal top contact. Applied Physics Letters 2003, 83, 3198–3200.

    Google Scholar 

  46. Lee M H, S. G.; Sankey, O. F. Electron transport through single alkane molecules with different contact geometries on gold. Phys. Status Solidi 2006, 243, 2021–2029.

    Google Scholar 

  47. Noguchi, H.; Ito, M.; Uosaki, K. Molecular orientation of self-assembled monolayer of octadecanethiol on platinum surface studied by femtosecond broad-bandwidth sum frequency generation spectroscopy. Chemistry Letters 2005, 34, 950–951.

    Google Scholar 

  48. Li, Z.; Chang, S.-C.; Williams, R. S. Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir 2003, 19, 6744–6749.

    Google Scholar 

  49. Stapleton, J. J.; Daniel, T. A.; Uppili, S.; Cabarcos, O. M.; Naciri, J.; Shashidhar, R.; Allara, D. L. Self-assembly, characterization, and chemical stability of isocyanide-bound molecular wire monolayers on gold and palladium surfaces. Langmuir 2005, 21, 11061–11070.

    Google Scholar 

  50. Carvalho, A.; Geissler, M.; Schmid, H.; Michel, B.; Delamarche, E. Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing. Langmuir 2002, 18, 2406–2412.

    Google Scholar 

  51. Lukas, S.; Vollmer, S.; Witte, G.; Woll, C. Adsorption of acenes on flat and vicinal Cu(111) surfaces: Step induced formation of lateral order. The Journal of Chemical Physics 2001, 114, 10123–10130.

    Google Scholar 

  52. Jennings, G. K.; Yong, T.-H.; Munro, J. C.; Laibinis, P. E. Structural effects on the barrier properties of self-assembled monolayers formed from long-chain ω-alkoxy-n-alkanethiols on copper. Journal of the American Chemical Society 2003, 125, 2950–2957.

    Google Scholar 

  53. Colvin, V. L.; Goldstein, A. N.; Alivisatos, A. P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. Journal of the American Chemical Society 1992, 114, 5221–5230.

    Google Scholar 

  54. McGuiness, C. L.; Shaporenko, A.; Mars, C. K.; Uppili, S.; Zharnikov, M.; Allara, D. L. Molecular self-assembly at bare semiconductor surfaces: Preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001). Journal of the American Chemical Society 2006, 128, 5231–5243.

    Google Scholar 

  55. Zerulla, D.; Chassé, T. Structure and self-assembly of alkanethiols on III-V semiconductor (1 1 0) surfaces. Journal of Electron Spectroscopy and Related Phenomena 2009, 172, 78–87.

    Google Scholar 

  56. Muskal, N.; Turyan, I.; Mandler, D. Self-assembled monolayers on mercury surfaces. Journal of Electroanalytical Chemistry 1996, 409, 131–136.

    Google Scholar 

  57. Mann, B.; Kuhn, H.; Szentpály, L. V. Tunnelling through fatty acid monolayers and its relevance to photographic sensitization. Chemical Physics Letters 1971, 8, 82–84.

    Google Scholar 

  58. Slowinski, K.; Chamberlain, R. V.; Miller, C. J.; Majda, M. Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. J. Am. Chem. Soc. 1997, 119, 11910.

    Google Scholar 

  59. Haag, R.; Rampi, M. A.; Holmlin, R. E.; Whitesides, G. M. Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J. Am. Chem. Soc. 1999, 121, 7895–7906.

    Google Scholar 

  60. Muskal, N.; Mandler, D. Thiol self-assembled monolayers on mercury surfaces: the adsorption and electrochemistry of [omega]-mercaptoalkanoic acids. Electrochimica Acta 1999, 45, 537–548.

    Google Scholar 

  61. Senturia, S. D. Microsystem Design; Springer: New York, 2000.

    Google Scholar 

  62. Moon, D. W.; Kurokawa, A.; Ichimura, S.; Lee, H. W.; Jeon, I. C. Ultraviolet-ozone jet cleaning process of organic surface contamination layers. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1999, 17, 150–154.

    Google Scholar 

  63. Adamson, A. W.; Gast, A. P. Physical Chemistry of Surfaces; John Wiley & Sons, Inc.: New York, 1997.

    Google Scholar 

  64. Crist, B. V. Handbook of Monochromatic XPS Spectra, Semiconductors; Wiley: New York, 2000.

    Google Scholar 

  65. Love, J. C.; Wolfe, D. B.; Haasch, R.; Chabinyc, M. L.; Paul, K. E.; Whitesides, G. M.; Nuzzo, R. G. Formation and structure of self-assembled monolayers of alkanethiolates on palladium. Journal of the American Chemical Society 2003, 125, 2597–2609.

    Google Scholar 

  66. Skaife, J. J.; Brake, J. M.; Abbott, N. L. Influence of nanometer-scale topography of surfaces on the orientational response of liquid crystals to proteins specifically bound to surface-immobilized receptors. Langmuir 2001, 17, 5448–5457.

    Google Scholar 

  67. Wang, D.; Thomas, S. G.; Wang, K. L.; Xia, Y.; Whitesides, G. M. Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO[sub 2] surfaces using self-assembled monolayers. Applied Physics Letters 1997, 70, 1593–1595.

    Google Scholar 

  68. Choi-Yim, H.; Johnson, W. L. Bulk metallic glass matrix composites. Applied Physics Letters 1997, 71, 3808–3810.

    Google Scholar 

  69. Das, J.; Tang, M. B.; Kim, K. B.; Theissmann, R.; Baier, F.; Wang, W. H.; Eckert, J. “Work-hardenable” ductile bulk metallic glass. Physical Review Letters 2005, 94, 205501.

    Google Scholar 

  70. Semaltianos, N. G.; Wilson, E. G. Investigation of the surface morphology of thermally evaporated thin gold films on mica, glass, silicon and calcium fluoride substrates by scanning tunneling microscopy. Thin Solid Films 2000, 366, 111–116.

    Google Scholar 

  71. Porath, D.; Goldstein, Y.; Grayevsky, A.; Millo, O. Scanning tunneling microscopy studies of annealing of gold films. Surface Science 1994, 321, 81–88.

    Google Scholar 

  72. Twardowski, M.; Nuzzo, R. G. Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers. Langmuir 2002, 18, 5529–5538.

    Google Scholar 

  73. Seker, E.; Reed, M. L.; Begley, M. R. A thermal treatment approach to reduce microscale void formation in blanket nanoporous gold films. Scripta Materialia 2009, 60, 435–438.

    Google Scholar 

  74. Saif Islam, M.; Jung, G. Y.; Ha, T.; Stewart, D. R.; Chen, Y.; Wang, S. Y.; Williams, R. S. Ultra-smooth platinum surfaces for nanoscale devices fabricated using chemical mechanical polishing. Applied Physics A: Materials Science & amp; Processing 2005, 80, 1385–1389.

    Google Scholar 

  75. Kibler, L. A.; Cuesta, A.; Kleinert, M.; Kolb, D. M. In-situ STM characterisation of the surface morphology of platinum single crystal electrodes as a function of their preparation. J. Electroanal. Chem. 2000, 484, 73–82.

    Google Scholar 

  76. Banner, L. T.; Richter, A.; Pinkhassik, E. Pinhole-free largegrained atomically smooth Au(111) substrates prepared by flame-annealed template stripping. Surface and Interface Analysis 2009, 41, 49–55.

    Google Scholar 

  77. DeRose, J. A.; Thundat, T.; Nagahara, L. A.; Lindsay, S. M. Gold grown epitaxially on mica: Conditions for large area flat faces. Surface Science 1991, 256, 102–108.

    Google Scholar 

  78. Higo, M.; Fujita, K.; Tanaka, Y.; Mitsushio, M.; Yoshidome, T. Surface morphology of metal films deposited on mica at various temperatures observed by atomic force microscopy. Applied Surface Science 2006, 252, 5083–5099.

    Google Scholar 

  79. Barnes, M. C.; Kim, D.-Y.; Ahn, H. S.; Lee, C. O.; Hwang, N. M. Deposition mechanism of gold by thermal evaporation: approach by charged cluster model. Journal of Crystal Growth 2000, 213, 83–92.

    Google Scholar 

  80. Masens, C.; Schulte, J.; Phillips, M.; Dligatch, S. Ultra flat gold surfaces for use in chemical force microscopy: Scanning probe microscopy studies of the effect of preparation regime on surface morphology. Microscopy and Microanalysis 2000, 6, 113–120.

    Google Scholar 

  81. Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. Molecular rectification in metal-SAM-metal oxide-metal junctions. Journal of the American Chemical Society 2009, 131, 17814–17827.

    Google Scholar 

  82. Logeeswaran, V. J.; Chan, M. L.; Bayam, Y.; Islam, M. S.; Horsley, D. A.; Li, X.; Wu, W.; Wang, S. Y.; Williams, R. S. Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films. Appl. Phys. A-Mater. Sci. Process. 2007, 87, 187–192.

    Google Scholar 

  83. Strong, L.; Whitesides, G. M. Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 1988, 4, 546–558.

    Google Scholar 

  84. Luedtke, W. D.; Landman, U. Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites. The Journal of Physical Chemistry B 1998, 102, 6566–6572.

    Google Scholar 

  85. Weisbecker, C. S.; Merritt, M. V.; Whitesides, G. M. Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 1996, 12, 3763–3772.

    Google Scholar 

  86. Terrill, R. H.; Postlethwaite, T. A.; Chen, C.-H.; Poon, C.-D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. Journal of the American Chemical Society 1995, 117, 12537–12548.

    Google Scholar 

  87. Hostetler, M. J.; Wingate, J. E.; Zhong, C. J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; et al. Monolayer-protected cluster molecules. Langmuir 1998, 14, 27–36.

    Google Scholar 

  88. Zangmeister, C. D.; Picraux, L. B.; van Zee, R. D.; Yao, Y.; Tour, J. M. Energy-level alignment and work function shifts for thiol-bound monolayers of conjugated molecules selfassembled on Ag, Cu, Au, and Pt. Chemical Physics Letters 2007, 442, 390–393.

    Google Scholar 

  89. Fracasso, D.; Muglali, M. I.; Rohwerder, M.; Terfort, A.; Chiechi, R. C. Influence of an atom in EGaIn/Ga2O3 tunneling junctions comprising self-assembled monolayers. The Journal of Physical Chemistry C 2013, 117, 11367–11376.

    Google Scholar 

  90. Rusu, P. C.; Giovannetti, G.; Weijtens, C.; Coehoorn, R.; Brocks, G. Work function pinning at metal-organic interfaces. The Journal of Physical Chemistry C 2009, 113, 9974–9977.

    Google Scholar 

  91. Nijhuis, C. A.; Reus, W. F.; Barber, J. R.; Dickey, M. D.; Whitesides, G. M. Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Letters 2010, 10, 3611–3619.

    Google Scholar 

  92. Rudnev, A. V.; Pobelov, I. V.; Wandlowski, T. Structural aspects of redox-mediated electron tunneling. J. Electroanal. Chem. 2011, 660, 302–308.

    Google Scholar 

  93. Schwartz, D. K. Langmuir-Blodgett film structure. Surface Science Reports 1997, 27, 245–334.

    Google Scholar 

  94. Xu T.; Morris, T. A.; Szulczewski, G. J.; Metzger, R. M.; Szablewski, M. Current-voltage characteristics of an LB monolayer of didecylammonium tricyanoquinodimethanide measured between macroscopic gold electrodes. J. Mater. Chem. 2002, 12, 3167–3171.

    Google Scholar 

  95. Petty, M. C. Langmuir-blodgett films. Endeavour 1983, 7, 65–69.

    Google Scholar 

  96. Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones, L.; Tour, J. M. Nanoscale metal self-assembled monolayer metal heterostructures. Applied Physics Letters 1997, 71, 611–613.

    Google Scholar 

  97. Richter, C. A.; Hacker, C. A.; Richter, L. J. Electrical and spectroscopic characterization of metal/monolayer/Si devices. The Journal of Physical Chemistry B 2005, 109, 21836–21841.

    Google Scholar 

  98. Xu, T.; Zach, M. P.; Xiao, Z. L.; Rosenmann, D.; Welp, U.; Kwok, W. K.; Crabtree, G. W. Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Applied Physics Letters 2005, 86, 203104.

    Google Scholar 

  99. Green, J. E.; Wook Choi, J.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shik Shin, Y.; Tseng, H.-R.; Stoddart, J. F.; Heath, J. R. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 2007, 445, 414–417.

    Google Scholar 

  100. Selikson, B.; Longo, T. A. A study of purple plague and its role in integrated circuits. Proceedings of the IEEE 1964, 52, 1638–1641.

    Google Scholar 

  101. Horsting, C. W. Purple plague and gold purity. In Reliability Physics Symposium, 1972. 10th Annual, 1972; pp 155–158.

    Google Scholar 

  102. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemical Society 1987, 109, 3559–3568.

    Google Scholar 

  103. Sato, Y.; Frey, B. L.; Corn, R. M.; Uosaki, K. Polarization modulation fourier transform infrared studies of the effects of self-assembly time on the order and orientation of 11-ferrocenyl-1-undecanethiol monolayers on gold. Bulletin of the Chemical Society of Japan 1994, 67, 21–25.

    Google Scholar 

  104. Rijal, K.; Mutharasan, R. Method for measuring the self-assembly of alkanethiols on gold at femtomolar concentrations. Langmuir 2007, 23, 6856–6863.

    Google Scholar 

  105. Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society 1989, 111, 321–335.

    Google Scholar 

  106. Ulman, A. Formation and structure of self-assembled monolayers. Chemical Reviews 1996, 96, 1533–1554.

    Google Scholar 

  107. Katz, H. E. Multilayer deposition of novel organophosphonates with zirconium(IV). Chemistry of Materials 1994, 6, 2227–2232.

    Google Scholar 

  108. Schilling, M. L.; Katz, H. E.; Stein, S. M.; Shane, S. F.; Wilson, W. L.; Ungashe, S. B.; Taylor, G. N.; Putvinski, T. M.; Chidsey, C. E. D.; Buratto, S. Structural studies of zirconium alkylphosphonate monolayers and multilayer assemblies. Langmuir 1993, 9, 2156–2160.

    Google Scholar 

  109. Thomas, R. C.; Sun, L.; Crooks, R. M.; Ricco, A. J. Real-time measurements of the gas-phase adsorption of n-alkylthiol mono- and multilayers on gold. Langmuir 1991, 7, 620–622.

    Google Scholar 

  110. Mekhalif, Z.; Laffineur, F.; Couturier, N.; Delhalle, J. Elaboration of self-assembled monolayers of n-alkanethiols on nickel polycrystalline substrates: Time, concentration, and solvent effects. Langmuir 2003, 19, 637–645.

    Google Scholar 

  111. Dannenberger O. B. M.; Grunze, M. Self-assembly of n-alkanethiols: A kinetic study by second harmonic generation. J. Phys. Chem. 1999, 103, 2202–2213.

    Google Scholar 

  112. Schwartz, D. K. Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry 2001, 52, 107–137.

    Google Scholar 

  113. Karpovich, D. S.; Blanchard, G. J. Direct measurement of the adsorption kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface. Langmuir 1994, 10, 3315–3322.

    Google Scholar 

  114. Bertilsson, L.; Liedberg, B. Infrared study of thiol monolayer assemblies on gold: Preparation, characterization, and functionalization of mixed monolayers. Langmuir 1993, 9, 141–149.

    Google Scholar 

  115. Poirier, G. E. Mechanism of formation of Au vacancy islands in alkanethiol monolayers on Au(111). Langmuir 1997, 13, 2019–2026.

    Google Scholar 

  116. Maoz, R.; Cohen, S. R.; Sagiv, J. Nanoelectrochemical patterning of monolayer surfaces: Toward spatially defined self-assembly of nanostructures. Advanced Materials 1999, 11, 55–61.

    Google Scholar 

  117. Camillone, N.; Leung, T. Y. B.; Schwartz, P.; Eisenberger, P.; Scoles, G. Chain length dependence of the striped phases of alkanethiol monolayers self-assembled on Au(111): An atomic beam diffraction study. Langmuir 1996, 12, 2737–2746.

    Google Scholar 

  118. Leopold, M. C.; Bowden, E. F. Influence of gold substrate topography on the voltammetry of cytochrome c adsorbed on carboxylic acid terminated self-assembled monolayers. Langmuir 2002, 18, 2239–2245.

    Google Scholar 

  119. Gun, J.; Sagiv, J. On the formation and structure of self-assembling monolayers: III. Time of formation, solvent retention, and release. Journal of Colloid and Interface Science 1986, 112, 457–472.

    Google Scholar 

  120. Keller, H.; Schrepp, W.; Fuchs, H. Self-assembled organic films on gold and silver. Thin Solid Films 1992, 210–211, 799–802.

    Google Scholar 

  121. Yamada, R.; Wano, H.; Uosaki, K. Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface. Langmuir 2000, 16, 5523–5525.

    Google Scholar 

  122. Bensebaa, F.; Voicu, R.; Huron, L.; Ellis, T. H.; Kruus, E. Kinetics of formation of long-chain n-alkanethiolate monolayers on polycrystalline gold. Langmuir 1997, 13, 5335–5340.

    Google Scholar 

  123. Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society 1987, 109, 733–740.

    Google Scholar 

  124. Bareman, J. P.; Klein, M. L. Collective tilt behavior in dense, substrate-supported monolayers of long-chain molecules: A molecular dynamics study. The Journal of Physical Chemistry 1990, 94, 5202–5205.

    Google Scholar 

  125. Camillone III, N.; Chidsey, C. E. D.; Eisenberger, P.; Fenter, P.; Li, J.; Liang, K. S.; Liu, G. Y.; Scoles, G. Structural defects in self-assembled organic monolayers via combined atomic beam and x-ray diffraction. The Journal of Chemical Physics 1993, 99, 744–747.

    Google Scholar 

  126. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews 2005, 105, 1103–1169.

    Google Scholar 

  127. Sheen, C. W.; Shi, J. X.; Maartensson, J.; Parikh, A. N.; Allara, D. L. A new class of organized self-assembled monolayers: Alkane thiols on gallium arsenide(100). Journal of the American Chemical Society 1992, 114, 1514–1515.

    Google Scholar 

  128. Magnussen, O. M.; Ocko, B. M.; Deutsch, M.; Regan, M. J.; Pershan, P. S.; Abernathy, D.; Grubel, G.; Legrand, J.-F. Self-assembly of organic films on a liquid metal. Nature 1996, 384, 250–252.

    Google Scholar 

  129. Fenter, P.; Schreiber, F.; Zhou, L.; Eisenberger, P.; Forrest, S. R. In situ studies of morphology, strain, and growth modes of a molecular organic thin film. Physical Review B 1997, 56, 3046–3054.

    Google Scholar 

  130. Dubois, L. H.; Nuzzo, R. G. Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem. 1992, 43, 437–463.

    Google Scholar 

  131. Yamamoto, H.; Waldeck, D. H. Effect of tilt-angle on electron tunneling through organic monolayer films. The Journal of Physical Chemistry B 2002, 106, 7469–7473.

    Google Scholar 

  132. Poirier, G. E.; Tarlov, M. J. The c(4X2) superlattice of n-alkanethiol monolayers self-assembled on Au(111). Langmuir 1994, 10, 2853–2856.

    Google Scholar 

  133. Lüssem, B.; Müller-Meskamp, L.; Karthäuser, S.; Waser, R. A new phase of the c(4 × 2) superstructure of alkanethiols grown by vapor phase deposition on gold. Langmuir 2005, 21, 5256–5258.

    Google Scholar 

  134. Gottschalck, J.; Hammer, B. A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111). The Journal of Chemical Physics 2002, 116, 784–790.

    Google Scholar 

  135. Tachibana, M.; Yoshizawa, K.; Ogawa, A.; Fujimoto, H.; Hoffmann, R. Sulfur-gold orbital interactions which determine the structure of alkanethiolate/Au(111) self-assembled monolayer systems. The Journal of Physical Chemistry B 2002, 106, 12727–12736.

    Google Scholar 

  136. Pensa, E.; Vericat, C.; Grumelli, D.; Salvarezza, R. C.; Park, S. H.; Longo, G. S.; Szleifer, I.; Mendez De Leo, L. P. New insight into the electrochemical desorption of alkanethiol SAMs on gold. Physical Chemistry Chemical Physics 2012, 14, 12355–12367.

    Google Scholar 

  137. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chemical Society Reviews 2010, 39, 1805–1834.

    Google Scholar 

  138. Smith, R. K.; Lewis, P. A.; Weiss, P. S. Patterning self-assembled monolayers. Progress in Surface Science 2004, 75, 1–68.

    Google Scholar 

  139. Weck, M.; Jackiw, J. J.; Rossi, R. R.; Weiss, P. S.; Grubbs, R. H. Ring-opening metathesis polymerization from surfaces. Journal of the American Chemical Society 1999, 121, 4088–4089.

    Google Scholar 

  140. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society 2005, 127, 2264–2271.

    Google Scholar 

  141. Camarero, J. A. Recent developments in the site-specific immobilization of proteins onto solid supports. Peptide Science 2008, 90, 450–458.

    Google Scholar 

  142. Sullivan, T. P.; Huck, W. T. S. Reactions on monolayers: Organic synthesis in two dimensions. European Journal of Organic Chemistry 2003, 2003, 17–29.

    Google Scholar 

  143. Pirrung, M. C. How to make a DNA chip. Angewandte Chemie International Edition 2002, 41, 1276–1289.

    Google Scholar 

  144. Rozsnyai, L. F.; Wrighton, M. S. Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers. Chemistry of Materials 1996, 8, 309–311.

    Google Scholar 

  145. Ruckenstein, E.; Li, Z. F. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Advances in Colloid and Interface Science 2005, 113, 43–63.

    Google Scholar 

  146. Bumm, L. A.; Arnold, J. J.; Charles, L. F.; Dunbar, T. D.; Allara, D. L.; Weiss, P. S. Directed self-assembly to create molecular terraces with molecularly sharp boundaries in organic monolayers. Journal of the American Chemical Society 1999, 121, 8017–8021.

    Google Scholar 

  147. Kautz, N. A.; Kandel, S. A. Alkanethiol/Au(111) self-assembled monolayers contain gold adatoms: Scanning tunneling microscopy before and after reaction with atomic hydrogen. Journal of the American Chemical Society 2008, 130, 6908–6909.

    Google Scholar 

  148. Schoenenberger, C.; Sondag-Huethorst, J. A. M.; Jorritsma, J.; Fokkink, L. G. J. What are the “holes” in self-assembled monolayers of alkanethiols on gold? Langmuir 1994, 10, 611–614.

    Google Scholar 

  149. Kautz, N. A.; Kandel, S. A. Alkanethiol monolayers contain gold adatoms, and adatom coverage is independent of chain length. The Journal of Physical Chemistry C 2009, 113, 19286–19291.

    Google Scholar 

  150. Tobias, P. A.; Trindade, D. C. Applied Reliability; CRC Press: New York, 1995.

    Google Scholar 

  151. Zhang, Y.; Terrill, R. H.; Tanzer, T. A.; Bohn, P. W. Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at low irradiance. Journal of the American Chemical Society 1998, 120, 2654–2655.

    Google Scholar 

  152. Huang, J.; Hemminger, J. C. Photooxidation of thiols in self-assembled monolayers on gold. Journal of the American Chemical Society 1993, 115, 3342–3343.

    Google Scholar 

  153. Zhou, C.; Walker, A. V. UV photooxidation of a homologous series of n-alkanethiolate monolayers on GaAs(001): A static SIMS investigation. The Journal of Physical Chemistry C 2008, 112, 797–805.

    Google Scholar 

  154. Zhou, C.; Walker, A. V. UV photooxidation and photopatterning of alkanethiolate self-assembled monolayers (SAMs) on GaAs (001). Langmuir 2007, 23, 8876–8881.

    Google Scholar 

  155. Lee, S.-H.; Lin, W.-C.; Kuo, C.-H.; Karakachian, M.; Lin, Y.-C.; Yu, B.-Y.; Shyue, J.-J. Photooxidation of amineterminated self-assembled monolayers on gold. The Journal of Physical Chemistry C 2010, 114, 10512–10519.

    Google Scholar 

  156. Hutt, D. A.; Leggett, G. J. Functionalization of hydroxyl and carboxylic acid terminated self-assembled monolayers. Langmuir 1997, 13, 2740–2748.

    Google Scholar 

  157. Schoenfisch, M. H.; Pemberton, J. E. Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces. Journal of the American Chemical Society 1998, 120, 4502–4513.

    Google Scholar 

  158. Aqua, T.; Cohen, H.; Vilan, A.; Naaman, R. Long-range substrate effects on the stability and reactivity of thiolated self-assembled monolayers. The Journal of Physical Chemistry C 2007, 111, 16313–16318.

    Google Scholar 

  159. Bucher, J.-P.; Santesson, L.; Kern, K. Thermal healing of self-assembled organic monolayers: Hexane- and octadecanethiol on Au(111) and Ag(111). Langmuir 1994, 10, 979–983.

    Google Scholar 

  160. Chandekar, A.; Sengupta, S. K.; Whitten, J. E. Thermal stability of thiol and silane monolayers: A comparative study. Applied Surface Science 2010, 256, 2742–2749.

    Google Scholar 

  161. Schlenoff, J. B.; Li, M.; Ly, H. Stability and self-exchange in alkanethiol monolayers. Journal of the American Chemical Society 1995, 117, 12528–12536.

    Google Scholar 

  162. Yang, G.; Amro, N. A.; Starkewolfe, Z. B.; Liu, G.-Y. Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media. Langmuir 2004, 20, 3995–4003.

    Google Scholar 

  163. Akkerman, H. B.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Towards molecular electronics with large-area molecular junctions. Nature 2006, 441, 69–72.

    Google Scholar 

  164. Williams, K. R.; Gupta, K.; Wasilik, M. Etch rates for micromachining processing-Part II. Journal of Microelectromechanical Systems 2003, 12, 761–778.

    Google Scholar 

  165. Cui, X. L.; Jiang, D. L.; Diao, P.; Li, J. X.; Tong, R. T.; Wang, X. K. Assessing the apparent effective thickness of alkanethiol self-assembled monolayers in different concentrations of Fe(CN)6 3−/Fe(CN)6 4− by ac impedance spectroscopy. Journal of Electroanalytical Chemistry 1999, 470, 9–13.

    Google Scholar 

  166. Cras, J. J.; Rowe-Taitt, C. A.; Nivens, D. A.; Ligler, F. S. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronics 1999, 14, 683–688.

    Google Scholar 

  167. Campina, J. M.; Martins, A.; Silva, F. A new cleaning methodology for efficient Au-SAM removal. Electrochimica Acta 2008, 53, 7681–7689.

    Google Scholar 

  168. Lewis, M.; Tarlov, M.; Carron, K. Study of the photooxidation process of self-assembled alkanethiol monolayers. Journal of the American Chemical Society 1995, 117, 9574–9575.

    Google Scholar 

  169. Geyer, W.; Stadler, V.; Eck, W.; Zharnikov, M.; Golzhauser, A.; Grunze, M. Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography. Applied Physics Letters 1999, 75, 2401–2403.

    Google Scholar 

  170. Zharnikov, M.; Grunze, M. Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2002, 20, 1793–1807.

    Google Scholar 

  171. Xia, Y.; Zhao, X.-M.; Whitesides, G. M. Pattern transfer: Self-assembled monolayers as ultrathin resists. Microelectronic Engineering 1996, 32, 255–268.

    Google Scholar 

  172. Balmer, T. E.; Schmid, H.; Stutz R.; Delamarche E.; Michel B.; Spencer N. D.; Wolf, H. Diffusion of alkanedithiols in PDMS and its implications on microcontact printing (μ CP). Langmuir 2005, 21, 622–632.

    Google Scholar 

  173. Salaita, K.; Wang, Y.; Mirkin, C. A. Applications of dip-pen nanolithography. Nat Nano 2007, 2, 145–155.

    Google Scholar 

  174. Rianasari, I.; Walder, L.; Burchardt, M.; Zawisza, I.; Wittstock, G. Inkjet-printed thiol self-assembled monolayer structures on gold: Quality control and microarray electrode fabrication. Langmuir 2008, 24, 9110–9117.

    Google Scholar 

  175. Cooper, E.; Wiggs, R.; A. Hutt, D.; Parker, L.; Leggett, G. J.; L. Parker, T. Rates of attachment of fibroblasts to self-assembled monolayers formed by the adsorption of alkylthiols onto gold surfaces. Journal of Materials Chemistry 1997, 7, 435–441.

    Google Scholar 

  176. Hutt, D. A.; Cooper, E.; Leggett, G. J. Structure and mechanism of photooxidation of self-assembled monolayers of alkylthiols on silver studied by XPS and static SIMS. The Journal of Physical Chemistry B 1998, 102, 174–184.

    Google Scholar 

  177. Shadnam, M. R.; Kirkwood, S. E.; Fedosejevs, R.; Amirfazli, A. Direct patterning of self-assembled monolayers on gold using a laser beam. Langmuir 2004, 20, 2667–2676.

    Google Scholar 

  178. Chan, K. C.; Kim, T.; Schoer, J. K.; Crooks, R. M. Polymeric self-assembled monolayers. 3. Pattern transfer by use of photolithography, electrochemical methods, and an ultrathin, self-assembled diacetylenic resist. Journal of the American Chemical Society 1995, 117, 5875–5876.

    Google Scholar 

  179. Gillen, G.; Wight, S.; Bennett, J.; Tarlov, M. J. Patterning of self-assembled alkanethiol monolayers on silver by microfocus ion and electron beam bombardment. Applied Physics Letters 1994, 65, 534–536.

    Google Scholar 

  180. Ballav, N.; Schilp, S.; Zharnikov, M. Electron-beam chemical lithography with aliphatic self-assembled monolayers. Angewandte Chemie 2008, 120, 1443–1446.

    Google Scholar 

  181. Berggren, K.; Bard, A.; Wilbur, J.; Gillaspy, J.; Helg, A.; McClelland, J.; Rolston, S.; Phillips, W.; Prentiss, M.; Whitesides, G. Microlithography by using neutral metastable atoms and self-assembled monolayers. Science 1995, 269, 1255–1257.

    Google Scholar 

  182. Klauser, R.; Hong, I. H.; Wang, S. C.; Zharnikov, M.; Paul, A.; Gölzhäuser, A.; Terfort, A.; Chuang, T. J. Imaging and patterning of monomolecular resists by zone-plate-focused X-ray microprobe. The Journal of Physical Chemistry B 2003, 107, 13133–13142.

    Google Scholar 

  183. Younkin, R.; Berggren, K. K.; Johnson, K. S.; Prentiss, M.; Ralph, D. C.; Whitesides, G. M. Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer. Applied Physics Letters 1997, 71, 1261–1263.

    Google Scholar 

  184. Delamarche, E.; Schmid, H.; Bietsch, A.; Larsen, N. B.; Rothuizen, H.; Michel, B.; Biebuyck, H. Transport mechanisms of alkanethiols during microcontact printing on gold. The Journal of Physical Chemistry B 1998, 102, 3324–3334.

    Google Scholar 

  185. Biebuyck, H. A.; Larsen, N. B.; Delamarche, E.; Michel, B. Lithography beyond light: Microcontact printing with monolayer resists. IBM Journal of Research and Development 1997, 41, 159–170.

    Google Scholar 

  186. Salaita, K.; Amarnath, A.; Higgins, T. B.; Mirkin, C. A. The effects of organic vapor on alkanethiol deposition via Dip-pen nanolithography. Scanning 2010, 32, 9–14.

    Google Scholar 

  187. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.

    Google Scholar 

  188. Salaita, K.; Wang, Y.; Fragala, J.; Vega, R. A.; Liu, C.; Mirkin, C. A. Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays. Angewandte Chemie 2006, 118, 7378–7381.

    Google Scholar 

  189. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

    Google Scholar 

  190. Bietsch, A.; Hegner, M.; Lang, H. P.; Gerber, C. Inkjet deposition of alkanethiolate monolayers and DNA oligonucleotides on gold: Evaluation of spot uniformity by wet etching. Langmuir 2004, 20, 5119–5122.

    Google Scholar 

  191. Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T. S.; Sirringhaus, H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 2004, 3, 171–176.

    Google Scholar 

  192. Huang, W.-X.; Lee, S.-H.; Sung, H. J.; Lee, T.-M.; Kim, D.-S. Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. International Journal of Heat and Fluid Flow 2008, 29, 1436–1446.

    Google Scholar 

  193. Gamerith, S.; Klug, A.; Scheiber, H.; Scherf, U.; Moderegger, E.; List, E. J. W. Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Advanced Functional Materials 2007, 17, 3111–3118.

    Google Scholar 

  194. Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nanoparticle printing with single-particle resolution. Nat. Nano. 2007, 2, 570–576.

    Google Scholar 

  195. Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.; Cohen, A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M. Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers. Journal of the American Chemical Society 2001, 123, 5075–5085.

    Google Scholar 

  196. Rampi, M. A.; Whitesides, G. M. A versatile experimental approach for understanding electron transport through organic materials. Chemical Physics 2002, 281, 373–391.

    Google Scholar 

  197. Engelkes V B, B. J. M.; Frisbie, C. D. Length-dependent transport in molecular junctions based on SAMS of alkanethiols and alkanedithiols: Effect of metal work function and applied bias on tunneling efficiency and contact resistance. J. Am. Chem. Soc. 2004, 126, 14287.

    Google Scholar 

  198. Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. Effect of anchoring groups on single-molecule conductance: Comparative study of thiol-, amine, and carboxylic-acidterminated molecules. J. Am. Chem. Soc. 2006, 128, 15874.

    Google Scholar 

  199. Xu, B.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

    Google Scholar 

  200. Kim, T.-W.; Wang, G.; Lee, H.; Lee, T. Statistical analysis of electronic properties of alkanethiols in metal-moleculemetal junctions. Nanotechnology 2007, 18, 315204.

    Google Scholar 

  201. Wang, W. Y.; Lee, T.; Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Physical Review B 2003, 68, 035416.

    Google Scholar 

  202. Akkerman, H. B.; Naber, R. C. G.; Jongbloed, B.; van Hal, P. A.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions. Proceedings of the National Academy of Sciences 2007, 104, 11161–11166.

    Google Scholar 

  203. Morita, T.; Lindsay, S. Determination of single molecule conductances of alkanedithiols by conducting-atomic force microscopy with large gold nanoparticles. J. Am. Chem. Soc. 2007, 129, 7262.

    Google Scholar 

  204. Rampi, M. A.; Schueller, O. J. A.; Whitesides, G. M. Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness. Applied Physics Letters 1998, 72, 1781–1783.

    Google Scholar 

  205. Rampi, M. A.; Whitesides, G. M. Chemical and electrical properties of metal-SAM/SAM-metal junctions. Abstracts of Papers of the American Chemical Society 1998, 216, 166–201.

    Google Scholar 

  206. Slowinski, K.; Chamberlain, R. V.; Miller, C. J.; Majda, M. Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. Journal of the American Chemical Society 1997, 119, 11910–11919.

    Google Scholar 

  207. Watson, C. M.; Dwyer, D. J.; Andle, J. C.; Bruce, A. E.; Bruce, M. R. M. Stripping analysis of mercury using gold electrodes: Irreversible adsorption of mercury. Anal. Chem. 1999, 71, 3181–3186.

    Google Scholar 

  208. Vasjari, M.; Shirshov, Y. M.; Samoylov, A. V.; Mirsky, V. M. SPR investigation of mercury reduction and oxidation on thin gold electrodes. J. Electroanal. Chem. 2007, 605, 73–76.

    Google Scholar 

  209. Davis, J. R. Corrosion of Aluminum and Aluminum Alloys; ASM International, 1999.

    Google Scholar 

  210. Mangum, B. W.; Thornton, D. D. Determination of the triple-point temperature of gallium. Metrologia 1979, 15, 201–216.

    Google Scholar 

  211. Surmann, P.; Zeyat, H. Voltammetric analysis using a self-renewable non-mercury electrode. Analytical and Bioanalytical Chemistry 2005, 383, 1009–1013.

    Google Scholar 

  212. Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Eutectic Gallium-Indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angewandte Chemie 2008, 120, 148–150.

    Google Scholar 

  213. Borisov, B.; Charnaya, E.; Gartvik, A.; Tien, C.; Kumzerov, Y.; Lavrentev, V. Peculiarities of gallium crystallization in confined geometry. Physics of the Solid State 2004, 46, 2286–2291.

    Google Scholar 

  214. Michel, B.; Bernard, A.; Bietsch, A.; Delamarche, E.; Geissler, M.; Juncker, D.; Kind, H.; Renault, J. P.; Rothuizen, H.; Schmid, H.; et al. Printing meets lithography: Soft approaches to high-resolution patterning. IBM Journal of Research and Development 2001, 45, 697–719.

    Google Scholar 

  215. Wold, D. J.; Frisbie, C. D. Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. Journal of the American Chemical Society 2001, 123, 5549–5556.

    Google Scholar 

  216. Li, X.; He J.; Hihath, J.; Xu, B.; Lindsay, S. M.; Tao, N. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule-electrode contacts. J. Am. Chem. Soc. 2006, 128, 2135–2141.

    Google Scholar 

  217. Sakaguchi, H.; Hirai, A.; Iwata, F.; Sasaki, A.; Nagamura, T.; Kawata, E.; Nakabayashi, S. Determination of performance on tunnel conduction through molecular wire using a conductive atomic force microscope. Appl. Phys. Lett. 2001, 79, 3708–3710.

    Google Scholar 

  218. Wold, J. D.; Frisbie, C. D. Formation of metal-moleculemetal junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 2000, 122, 2970–2971.

    Google Scholar 

  219. Song H, L. H.; Lee, T. Intermolecular chain-to-chain tunneling in metal-alkanethiol-metal junctions. J. Am. Chem. Soc. 2007, 129, 3806–3807.

    Google Scholar 

  220. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178–180.

    Google Scholar 

  221. Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones II, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Insertion, conductivity and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au(111). J. Am. Chem. Soc. 1998, 120, 2721–2732.

    Google Scholar 

  222. Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Experimental observation of the transition from weak link to tunnel junction. Physica 1992, 191, 485–504.

    Google Scholar 

  223. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

    Google Scholar 

  224. van Ruitenbeek, J. M.; Alvarez, A.; Piñero, I.; Grahmann, C.; Joyez, P.; Devoret, H.; Esteve, D.; Urbina, C. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum. 1995, 67, 108–111.

    Google Scholar 

  225. Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81.

    Google Scholar 

  226. Vrouwe, S. A. G.; van der Giessen, E.; van der Molen, S. J.; Dulic, D.; Trouwborst, M. L.; van Wees, B. J. Mechanics of lithographically defined break junctions. Phys. Rev. 2005, 71, 035313.

    Google Scholar 

  227. Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Applied Physics Letters 1999, 75, 301–303.

    Google Scholar 

  228. Liang, W.; Shores, M. P.; Bockrath, M.; Long, J. R.; Park, H. Kondo resonance in a single-molecule transistor. Nature 2002, 417, 725–729.

    Google Scholar 

  229. Heersche, H. B.; Lientschnig, G.; O’Neill, K.; van der Zant, H. S. T.; Zandbergen, H. W. In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Appl. Phys. Lett. 2007, 91, 072107.

    Google Scholar 

  230. Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R. Effect of bond-length alternation in molecular wires. Journal of the American Chemical Society 2002, 124, 10654–10655.

    Google Scholar 

  231. Blum, A. S.; Kushmerick, J. G.; Pollack, S. K.; Yang, J. C.; Moore, M.; Naciri, J.; Shashidhar, R.; Ratna, B. R. Charge transport and scaling in molecular wires. The Journal of Physical Chemistry B 2004, 108, 18124–18128.

    Google Scholar 

  232. Akkerman, H. B.; Boer, B. D. Electrical conduction through single molecules and self-assembled monolayers. Journal of Physics: Condensed Matter 2008, 20, 013001.

    Google Scholar 

  233. Lindsay, S. M.; Ratner, M. A. Molecular transport junctions: Clearing mists. Advanced Materials 2007, 19, 23–31.

    Google Scholar 

  234. McCreery, R. L. Molecular electronic junctions. Chemistry of Materials 2004, 16, 4477–4496.

    Google Scholar 

  235. Haynie, B C; Walker, A.V.; Tighe, T. B.; Allara, D. L.; Winograd, N. Adventures in molecular electronics: How to attach wires to molecules. Appl. Surf. Sci. 2003, 203–204, 433–436.

    Google Scholar 

  236. Bang, G. S.; Chang, H.; Koo, J.-R.; Lee, T.; Advincula, R. C.; Lee, H. High-fidelity formation of a molecular-junction device using a thickness-controlled bilayer architecture. Small 2008, 4, 1399–1405.

    Google Scholar 

  237. Lee, J.-O.; Lientschnig, G.; Wiertz, F.; Struijk, M.; Janssen, R. A. J.; Egberink, R.; Reinhoudt, D. N.; Hadley, P.; Dekker, C. Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Letters 2003, 3, 113–117.

    Google Scholar 

  238. Haick, H.; Niitsoo, O.; Ghabboun, J.; Cahen, D. Electrical contacts to organic molecular films by metal evaporation: Effect of contacting details. The Journal of Physical Chemistry C 2007, 111, 2318–2329.

    Google Scholar 

  239. Haick, H.; Cahen, D. Making contact: Connecting molecules electrically to the macroscopic world. Progress in Surface Science 2008, 83, 217–261.

    Google Scholar 

  240. Haick, H.; Cahen, D. Contacting organic molecules by soft methods: Towards molecule-based electronic devices. Accounts of Chemical Research 2008, 41, 359–366.

    Google Scholar 

  241. de Boer, B.; Frank, M. M.; Chabal, Y. J.; Jiang, W.; Garfunkel, E.; Bao, Z. Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols. Langmuir 2004, 20, 1539–1542.

    Google Scholar 

  242. Walker, A. V.; Tighe, T. B.; Cabarcos, O. M.; Reinard, M. D.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers. Journal of the American Chemical Society 2004, 126, 3954–3963.

    Google Scholar 

  243. Metzger, R. M.; Xu, T.; Peterson, I. R. Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. The Journal of Physical Chemistry B 2001, 105, 7280–7290.

    Google Scholar 

  244. Majumdar, N.; Gergel, N.; Routenberg, D.; Bean, J. C.; Harriott, L. R.; Li, B.; Pu, L.; Yao, Y.; Tour, J. M. Nanowell device for the electrical characterization of metalmolecule-metal junctions. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2005, 23, 1417–1421.

    Google Scholar 

  245. Kim, J. Y.; Jung, J. H.; Lee, D. E.; Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals 2002, 126, 311–316.

    Google Scholar 

  246. Milani, F.; Grave, C.; Ferri, V.; Samorì, P.; Rampi, M. A. Ultrathin π-conjugated polymer films for simple fabrication of large-area molecular junctions. ChemPhysChem 2007, 8, 515–518.

    Google Scholar 

  247. Kaiser, A. B. Electronic transport properties of conducting polymers and carbon nanotubes. Reports on Progress in Physics 2001, 64, 1–49.

    Google Scholar 

  248. Moons, E.; Bruening, M.; Shanzer, A.; Beier, J.; Cahen, D. Electron transfer in hybrid molecular solid-state devices. Synthetic Metals 1996, 76, 245–248.

    Google Scholar 

  249. Vilan, A.; Cahen, D. Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: Principles and electrical effects. Advanced Functional Materials 2002, 12, 795–807.

    Google Scholar 

  250. Shimizu, K. T.; Fabbri, J. D.; Jelincic, J. J.; Melosh, N. A. Soft deposition of large-area metal contacts for molecular electronics. Advanced Materials 2006, 18, 1499–1504.

    Google Scholar 

  251. Stein, N.; Korobko, R.; Yaffe, O.; Har Lavan, R.; Shpaisman, H.; Tirosh, E.; Vilan, A.; Cahen, D. Nondestructive contact deposition for molecular electronics: Si-Alkyl//Au junctions. The Journal of Physical Chemistry C 2010, 114, 12769–12776.

    Google Scholar 

  252. Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chemical Reviews 1999, 99, 1823–1848.

    Google Scholar 

  253. Kumar, A.; Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett. 1993, 63, 2002–2004.

    Google Scholar 

  254. Xia, Y.; Whitesides, G. M. Soft lithography. Angew. Chem. Int. Edn 1998, 37, 153–184.

    Google Scholar 

  255. Loo, Y.-L.; Lang, D. V.; Rogers, J. A.; Hsu, J. W. P. Electrical contacts to molecular layers by nanotransfer printing. Nano Letters 2003, 3, 913–917.

    Google Scholar 

  256. Bolotin, K. I.; Kuemmeth, F.; Pasupathy, A. N.; Ralph, D. C. Metal-nanoparticle single-electron transistors fabricated using electromigration. Applied Physics Letters 2004, 84, 3154–3156.

    Google Scholar 

  257. Chu, C.; Na, J.-S.; Parsons, G. N. Conductivity in alkylamine/gold and alkanethiol/gold molecular junctions measured in molecule/nanoparticle/molecule bridges and conducting probe structures. Journal of the American Chemical Society 2007, 129, 2287–2296.

    Google Scholar 

  258. Tivanski, A. V.; He, Y.; Borguet, E.; Liu, H.; Walker, G. C.; Waldeck, D. H. Conjugated thiol Linker for enhanced electrical conduction of gold-molecule contacts. The Journal of Physical Chemistry B 2005, 109, 5398–5402.

    Google Scholar 

  259. Long, D. P.; Patterson, C. H.; Moore, M. H.; Seferos, D. S.; Bazan, G. C.; Kushmerick, J. G. Magnetic directed assembly of molecular junctions. Applied Physics Letters 2005, 86, 153105.

    Google Scholar 

  260. Liao, J.; Bernard, L.; Langer, M.; Schönenberger, C.; Calame, M. Reversible formation of molecular junctions in 2D nanoparticle arrays. Advanced Materials 2006, 18, 2444–2447.

    Google Scholar 

  261. Schneeweiss, M. A.; Kolb, D. M. The initial stages of copper deposition on bare and chemically modified gold electrodes. Physica Status Solidi (a) 1999, 173, 51–71.

    Google Scholar 

  262. Sondag-Huethorst, J. A. M.; Fokkink, L. G. J. Galvanic copper deposition on thiol-modified gold electrodes. Langmuir 1995, 11, 4823–4831.

    Google Scholar 

  263. Maisch, S.; Buckel, F.; Effenberger, F. Preparation of high quality electrical insulator self-assembled monolayers on gold. Experimental investigation of the conduction mechanism through organic thin films. Journal of the American Chemical Society 2005, 127, 17315–17322.

    Google Scholar 

  264. Azuma, Y.; Yasutake, Y.; Kono, K.; Kanehara, M.; Teranishi, T.; Majima, Y. Single-electron transistor fabricated by two bottom-up processes of electroless Au plating and chemisorption of Au nanoparticle. Japanese Journal of Applied Physics 2010, 49, 090206.

    Google Scholar 

  265. Charbonnier, M.; Alami, M.; Romand, M. Plasma treatment process for palladium chemisorption onto polymers before electroless deposition. Journal of The Electrochemical Society 1996, 143, 472–480.

    Google Scholar 

  266. Kobayashi, Y.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chemistry of Materials 2001, 13, 1630–1633.

    Google Scholar 

  267. Garno, J. C.; Zangmeister, C. D.; Batteas, J. D. Directed electroless growth of metal nanostructures on patterned self-assembled monolayers. Langmuir 2007, 23, 7874–7879.

    Google Scholar 

  268. Mbindyo, J. K. N.; Mallouk, T. E.; Mattzela, J. B.; Kratochvilova, I.; Razavi, B.; Jackson, T. N.; Mayer, T. S. Template synthesis of metal nanowires containing monolayer molecular junctions. Journal of the American Chemical Society 2002, 124, 4020–4026.

    Google Scholar 

  269. Seo, S.; Min, M.; Lee, J.; Lee, T.; Choi, S.-Y.; Lee, H. Solution-processed reduced graphene oxide films as electronic contacts for molecular monolayer junctions. Angewandte Chemie International Edition 2012, 51, 108–112.

    Google Scholar 

  270. Li, T.; Hauptmann, J. R.; Wei, Z.; Petersen, S.; Bovet, N.; Vosch, T.; Nygård, J.; Hu, W.; Liu, Y.; Bjørnholm, T.; Nørgaard, K.; Laursen, B. W. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions. Advanced Materials 2012, 24, 1333–1339.

    Google Scholar 

  271. Li, T.; Jevric, M.; Hauptmann, J. R.; Hviid, R.; Wei, Z.; Wang, R.; Reeler, N. E. A.; Thyrhaug, E.; Petersen, S.; Meyer, J. A. S.; et al. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solidstate molecular junctions. Advanced Materials 2013, 25, 4164–4170.

    Google Scholar 

  272. Zhang, J.; Chi Q.; Ulstrup, J. Assembly dynamics and detailed structure of 1-propanethiol monolayers on Au(111) surfaces observed real time by in situ STM. Langmuir 2006, 22, 6203–6213.

    Google Scholar 

  273. Cossaro, A.; Mazzarello, R.; Rousseau, R.; Casalis, L.; Verdini, A.; Kohlmeyer, A.; Floreano, L.; Scandolo, S.; Morgante, A.; Klein, M. L.; Scoles, G. X-ray diffraction and computation yield the structure of alkanethiols on gold(111). Science 2008, 321, 943–946.

    Google Scholar 

  274. Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. Self-Assembled Monolayers of Alkanethiols on Gold: Comparisons of Monolayers Containing Mixtures of Short- and Long-Chain Constituents with Methyl and Bydroxymethyl Terminal Groups; American Chemical Society: Washington, DC, ETATS-UNIS, 1992.

    Google Scholar 

  275. Evans, S. D.; Sharma, R.; Ulman, A. Contact angle stability: Reorganization of monolayer surfaces? Langmuir 1991, 7, 156–161.

    Google Scholar 

  276. Creager, S. E.; Clarke, J. Contact-angle titrations of mixed .omega.-mercaptoalkanoic acid/alkanethiol monolayers on gold. Reactive vs nonreactive spreading, and chain length effects on surface pKa values. Langmuir 1994, 10, 3675–3683.

    Google Scholar 

  277. Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin, 2002.

    Google Scholar 

  278. Tao, F.; Bernasek, S. L. Understanding odd-even effects in organic self-assembled monolayers. Chemical Reviews 2007, 107, 1408–1453.

    Google Scholar 

  279. Tao, N. J. Electron transport in molecular junctions. Nat. Nanotechnol. 2006, 1, 1915–1921.

    Google Scholar 

  280. Shaporenko, A.; Brunnbauer, M.; Terfort, A.; Grunze, M.; Zharnikov, M. Structural forces in self-assembled monolayers: Terphenyl-substituted alkanethiols on noble metal substrates. The Journal of Physical Chemistry B 2004, 108, 14462–14469.

    Google Scholar 

  281. Stoliar, P.; Kshirsagar, R.; Massi, M.; Annibale, P.; Albonetti, C.; de Leeuw, D. M.; Biscarini, F. Charge injection across self-assembly monolayers in organic fieldeffect transistors: Odd-even effects. Journal of the American Chemical Society 2007, 129, 6477–6484.

    Google Scholar 

  282. Razavy, M. Quantum Theory of Tunneling; World Scientific: River Edge, NJ, 2003.

    Google Scholar 

  283. Sanchez, A.; Davis, C. F.; Liu, K. C.; Javan, A. The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies. Journal of Applied Physics 1978, 49, 5270–5277.

    Google Scholar 

  284. DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J. Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications. Advanced Materials 2009, 21, 1407–1433.

    Google Scholar 

  285. Simmons, J. G. Conduction in thin dielectric films. Journal of Physics D: Applied Physics 1971, 4, 613–658.

    Google Scholar 

  286. Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Daniel Frisbie, C.; Kushmerick, J. G. Transition from direct tunneling to field emission in metal-molecule-metal junctions. Physical Review Letters 2006, 97, 026801.

    Google Scholar 

  287. Brinkman, W. F.; Dynes, R. C.; Rowell, J. M. Tunneling conductance of asymmetrical barriers. Journal of Applied Physics 1970, 41, 1915–1921.

    Google Scholar 

  288. Miller, C. W.; Belyea, D. D. The impact of barrier height distributions in tunnel junctions. Journal of Applied Physics 2009, 105, 094505.

    Google Scholar 

  289. DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J. Charge conduction and breakdown mechanisms in self-assembled nanodielectrics. Journal of the American Chemical Society 2009, 131, 7158–7168.

    Google Scholar 

  290. Zehner, R. W.; Parsons, B. F.; Hsung, R. P.; Sita, L. R. Tuning the work function of gold with self-assembled monolayers derived from X-C6H4-C C-(n)C6H4-SH (n = 0, 1, 2; X = H, F, CH3, CF3, and OCH3). Langmuir 1999, 15, 1121–1127.

    Google Scholar 

  291. de Boer, B.; Hadipour, A.; Mandoc, M. M.; van Woudenbergh, T.; Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Advanced Materials 2005, 17, 621–625.

    Google Scholar 

  292. Kasap, S.; Capper, P. Springer Bandbook of Electronic and Photonic Materials; Springer: Berlin, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yogi Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celestin, M., Krishnan, S., Bhansali, S. et al. A review of self-assembled monolayers as potential terahertz frequency tunnel diodes. Nano Res. 7, 589–625 (2014). https://doi.org/10.1007/s12274-014-0429-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0429-8

Keywords

Navigation