Skip to main content
Log in

Charge separation and ultraviolet photovoltaic conversion of ZnO quantum dots conjugated with graphene nanoshells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

ZnO-graphene quasi core-shell quantum dot (QD) structures in which the inner ZnO QDs are covered with graphene nanoshells have been synthesized via a simple solution process method. The outer graphene nanoshells were identified as a single graphene layer using high resolution transmission electron microscopy (HR-TEM). Zn-O-C (graphene) chemical bonds between the inner ZnO QDs and the oxygen-containing functional groups introduced into the graphene layer are believed to be important in the formation of the consolidated quasi core-shell QD structure. A multilayer structure organic ultraviolet (UV) photovoltaic (PV) device was fabricated using ZnO-graphene core-shell QDs as the absorption layer. A quenching behavior as large as 71% near the UV emission peak for the ZnO-graphene core-shell QDs was observed in the photoluminescence. Density of state (DOS) calculations for the graphene using density functional theory (DFT) revealed that the static quenching can be attributed to a faster charge separation via the direct electron transfer from the conduction band (CB) of the ZnO QDs to the induced lowest unoccupied molecular orbitals (LUMO) of the graphene nanoshell resulting from the Zn-O-C bonding. This charge separation mechanism was confirmed experimentally using time-correlated single photon counting (TCSPC) measurements. The calculated average lifetime of 0.13 ns and 0.165 ns of the 375 and 383 nm UV emissions, respectively, for the ZnO-graphene core-shell QDs were approximately 10 times faster than those of 1.86 ns and 1.83 nm for the reference ZnO QDs; this is indicative of the existence of an additional high efficiency relaxation channel. The observed saturation current density (J sc), open circuit voltage (V oc), fill factor (FF), and power conversion efficiency (η) were 196.4 μA/cm2, 0.99 V, 0.24, and 2.33%, respectively. In this study, it was found that the UV power conversion efficiency of ZnO QDs could be significantly improved by invoking a fast photoinduced charge separation and the subsequent transport of carriers to the collecting electrodes through conjugation with highly conductive graphene nanoshell acceptors to the ZnO QDs donor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schön, J. H.; Kloc, Ch.; Bucher, E.; Batlogg B. Efficient organic photovoltaic diodes based on doped pentacene. Nature 2000, 403, 408–410.

    Article  Google Scholar 

  2. Peumans, P.; Uchida S.; Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 2003, 425, 158–162.

    Article  CAS  Google Scholar 

  3. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

    Article  CAS  Google Scholar 

  4. Seol, M.; Kim, H.; Tak, Y.; Yong, K. Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem. Commun. 2010, 46, 5521–5523.

    Article  CAS  Google Scholar 

  5. Chang, C. H.; Lee, Y. L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl. Phys. Lett. 2007, 91, 053503.

    Article  Google Scholar 

  6. Chen, J.; Song, J. L.; Sun, X. W.; Deng, W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S. An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl. Phys. Lett. 2009, 94, 153115.

    Google Scholar 

  7. Gao, X. F.; Li, H. B.; Sun, W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes. J. Phys. Chem. C. 2009, 113, 7531–7535.

    Article  CAS  Google Scholar 

  8. Lee, Y. L.; Lo, Y. S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater., 2009, 19, 604–609.

    Article  Google Scholar 

  9. Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc., 2008, 130, 1124–1125.

    Article  CAS  Google Scholar 

  10. Plass, P.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 2002, 106, 7578–7580.

    Article  CAS  Google Scholar 

  11. Zaban, A.; Mićić, O. I.; Gregg, B. A.; Nozik, A. J. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998, 14, 3153–3156.

    Article  CAS  Google Scholar 

  12. Li, F.; Son, D. I.; Kim, T. W.; Ryu, E.; Kim, S. W.; Lee, S. K.; Cho, Y. H. Photovoltaic cells fabricated utilizing core-shell CdSe/ZnSe quantum dot/multiwalled carbon nanotube heterostructures. Appl. Phys. Lett. 2009, 95, 061911.

    Article  Google Scholar 

  13. Yang, R. D.; Tripathy, S.; Li, Y.; Sue, H. J. Photoluminescence and micro-Raman scattering in ZnO nanoparticles: The influence of acetate adsorption. Chem. Phys. Lett., 2005, 411, 150–154.

    Article  CAS  Google Scholar 

  14. Chen, Y.; Bagnall, D. M.; Koh, H. J.; Park, K. T.; Hiraga, K.; Zhu, Z.; Yao, T. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys. 1998, 84, 3912.

    Article  CAS  Google Scholar 

  15. Biju, V.; Itoh, T.; Baba, Y.; Ishikawa, M. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. J. Phys. Chem. B. 2006, 110, 26068–26074.

    Article  CAS  Google Scholar 

  16. Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electro-luminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

    Article  CAS  Google Scholar 

  17. Li, F.; Son, D. I.; Seo, S. M.; Cha, H. M.; Kim, H. J.; Kim, B. J.; Jung, J. H.; Kim, T. W. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Appl. Phys. Lett. 2007, 91, 122111.

    Article  Google Scholar 

  18. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476.

    Article  CAS  Google Scholar 

  19. Kraabel, B.; McBranch, D.; Sariciftci, N. S.; Moses, D.; Heeger, A. J. Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60. Phys. Rev. B 1994, 50, 18543–18552.

    Article  CAS  Google Scholar 

  20. Li, F.; Son, D. I.; Cho, S. H.; Kim, W. T.; Kim, T. W. Flexible photovoltaic cells fabricated utilizing ZnO quantum dot/carbon nanotube heterojunctions. Nanotechnology 2009, 20, 155202.

    Article  Google Scholar 

  21. Son, D. I.; Kwon, B. W.; Yang, J. D.; Park, D. H.; Angadi, B.; Choi, W. K. High efficiency ultraviolet photovoltaic cells based on ZnO-C60 core-shell QDs with organic-inorganic multilayer structure. J. Mater. Chem. 2012, 22, 816–819.

    Article  CAS  Google Scholar 

  22. Jannik, C. M.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  Google Scholar 

  23. Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. S.; Yi, Y.; Angadi, B.; Lee, C. L.; Choi, W. K. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotech. 2012, 7, 465–471.

    Article  CAS  Google Scholar 

  24. Son, D. I.; Kim, T. W.; Shim, J. H.; Jung, J. H.; Lee, D. U.; Lee, J. M.; Park, W. I.; Choi, W. K. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 2010, 10, 2441–2447.

    Article  CAS  Google Scholar 

  25. Lahaye, R. J. W. E.; Jeong, H. K.; Park, C. Y.; Lee, Y. H. Density functional theory study of graphite oxide for different oxidation levels. Phys. Rev. B 2009, 79, 125435.

    Article  Google Scholar 

  26. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

    Article  Google Scholar 

  27. Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano, 2008, 2, 2301–2305.

    Article  CAS  Google Scholar 

  28. Fan, Z. J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L. J.; Feng, J.; Ren, Y. M.; Song, L. P.; Wei, F. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano, 2011, 5, 191–198.

    Article  CAS  Google Scholar 

  29. Pan, B.; Cui, D.; Ozkan, C. S.; Ozkan, M.; Xu, P.; Huang, T.; Liu, F.; Chen, H.; Li, Q.; He, R.; Gao, F. Effects of carbon nanotubes on photoluminescence properties of quantum dots. J. Phys. Chem. C 2008, 112, 939–944.

    Article  CAS  Google Scholar 

  30. Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J. Efficient hybrid solar cells from zinc oxide nanoparticles and conjugated polymers. Adv. Mater. 2004, 16, 1009–1013.

    Article  CAS  Google Scholar 

  31. Son, D. I.; Park, D. H.; Choi, W. K.; Cho, S. H.; Kim, W. T.; Kim, T. W. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Nanotechnology 2009, 20, 195203.

    Article  Google Scholar 

  32. Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Chem. Phys. C 2008, 112, 8192–8195.

    Article  CAS  Google Scholar 

  33. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 1–6.

    Article  Google Scholar 

  34. Cote, L. J.; Kim, F.; Huang, J. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043–1049.

    Article  CAS  Google Scholar 

  35. Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

    Article  CAS  Google Scholar 

  36. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.

    Article  CAS  Google Scholar 

  37. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.

    Article  CAS  Google Scholar 

  38. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

    Article  CAS  Google Scholar 

  39. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, Jr. C. A.; Ruoff, R. S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  CAS  Google Scholar 

  40. Fan, Z. J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L. J.; Feng, J.; Ren, Y. M.; Song, L. P.; Wei, F. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 2011, 5, 191–198.

    Article  CAS  Google Scholar 

  41. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Func. Mater. 2009, 19, 2577–2583.

    Article  CAS  Google Scholar 

  42. Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782–2789.

    Article  CAS  Google Scholar 

  43. Nakajima, T.; Mabuchi, A.; Hagiwara, R. A new structure model of graphite oxide. Carbon 1988, 26, 357–361.

    Article  CAS  Google Scholar 

  44. Gaussian 03, Revision C.02, Frisch, M. G.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C., et al. Gaussian Inc., Wallingford CT, 2004.

    Google Scholar 

  45. Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotech. 2009, 7, 217–224.

    Article  Google Scholar 

  46. Choulis, S. A.; Choong, V. E.; Patwardhan, A.; Mathai, M. K.; So, F. Interface Modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater. 2006, 16, 1075–1080.

    Article  CAS  Google Scholar 

  47. Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. photonics, 2007, 1, 717–722.

    Article  CAS  Google Scholar 

  48. Yang, H. Y.; Son, D. I.; Kim, T. W.; Lee, J. M.; Park, W. I. Enhancement of the photocurrent in ultraviolet photo-detectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer. Org. Electron. 2010, 11, 1313–1317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Kook Choi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, D.I., Kwon, B.W., Yang, J.D. et al. Charge separation and ultraviolet photovoltaic conversion of ZnO quantum dots conjugated with graphene nanoshells. Nano Res. 5, 747–761 (2012). https://doi.org/10.1007/s12274-012-0258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0258-6

Keywords

Navigation