Skip to main content
Log in

Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manganese oxides are cost-effective and green materials with rich electrochemical properties. Continuous research efforts have been undertaken to obtain MnO x materials with improved activity and stability for catalyzing the oxygen reduction reaction (ORR). Here, we have developed a novel ORR catalyst by nucleation and growth of Mn3O4 nanoparticles on graphene oxide (GO) sheets interconnected by electrically conducting multi-walled carbon nanotubes (MWCNTs). X-ray near edge absorption structure (XANES) spectroscopy revealed the partially reduced nature of GO and strong chemical coupling between the nanoparticles and the GO sheets. Incorporation of MWCNTs was found to improve the activity and stability of the hybrid by imparting higher conductivity to the hybrid material. Furthermore, surface oxidation of the manganese oxide nanoparticles through a calcination step was found to increase the density of ORR active sites. The strongly coupled and electrically interconnected Mn3O4/nanocarbon (Mn3O4/Nano-C) hybrid is one of the most active and stable manganese oxide-based ORR catalysts and shows promise for electrochemical energy conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Moussallem, I.; Jorissen, J.; Kunz, U.; Pinnow, S.; Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 2008, 38, 1177–1194.

    Article  CAS  Google Scholar 

  3. Perry, M. L.; Fuller, T. F. A historical perspective of fuel cell technology in the 20th century. J. Electrochem. Soc. 2002, 149, S59–S67.

    Article  CAS  Google Scholar 

  4. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  CAS  Google Scholar 

  5. Meng, H.; Jaouen, F.; Proietti, E.; Lefevre, M.; Dodelet, J. P. pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem. Commun. 2009, 11, 1986–1989.

    Article  CAS  Google Scholar 

  6. Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  CAS  Google Scholar 

  7. Gao, M. R.; Jiang, J.; Yu, S. H. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 2012, 8, 13–27.

    Article  CAS  Google Scholar 

  8. Liu, Y.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. Transition metal oxides as DMFC cathodes without platinum. J. Electrochem. Soc. 2007, 154, B664–B669.

    Article  CAS  Google Scholar 

  9. Meadowcroft, D. B. Low-cost oxygen electrode material. Nature 1970, 226, 847–848.

    Article  CAS  Google Scholar 

  10. Liu, R.; Wu, D.; Feng, X.; Muellen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Edit. 2010, 49, 2565–2569.

    Article  CAS  Google Scholar 

  11. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energ. Environ. Sci. 2011, 4, 3167–3192.

    Article  CAS  Google Scholar 

  12. Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energ. Environ. Sci. 2011, 4, 1238–1254.

    Article  CAS  Google Scholar 

  13. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  CAS  Google Scholar 

  14. Wang, H. L.; Liang, Y. Y.; Li, Y. G.; Dai, H. J. Co1−x S-graphene hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew. Chem. Int. Edit. 2011, 50, 10969–10972.

    Article  CAS  Google Scholar 

  15. Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  CAS  Google Scholar 

  16. Mao, L. Q.; Zhang, D.; Sotomura, T.; Nakatsu, K.; Koshiba, N.; Ohsaka, T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim. Acta 2003, 48, 1015–1021.

    Article  CAS  Google Scholar 

  17. Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

    Article  CAS  Google Scholar 

  18. Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

    Article  CAS  Google Scholar 

  19. Xiao, W.; Wang, D.; Lou, X. W. Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J. Phys. Chem. C 2010, 114, 1694–1700.

    Article  CAS  Google Scholar 

  20. Benbow, E. M.; Kelly, S. P.; Zhao, L.; Reutenauer, J. W.; Suib, S. L. Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J. Phys. Chem. C 2011, 115, 22009–22017.

    Article  CAS  Google Scholar 

  21. Garcia, A. C.; Herrera, A. D.; Ticianelli, E. A.; Chatenet, M.; Poinsignon, C. Evaluation of several carbon-supported nanostructured Ni-doped manganese oxide materials for the electrochemical reduction of oxygen. J. Electrochem. Soc. 2011, 158, B290–B296.

    Article  CAS  Google Scholar 

  22. Lee, J. S.; Park, G. S.; Lee, H. I.; Kim, S. T.; Cao, R.; Liu, M.; Cho, J. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett. 2011, 11, 5362–5366.

    Article  CAS  Google Scholar 

  23. Lee, J. S.; Lee, T.; Song, H. K.; Cho, J.; Kim, B. S. Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn-air batteries. Energ. Environ. Sci. 2011, 4, 4148–4154.

    Article  CAS  Google Scholar 

  24. Yang, Z.; Zhou, X.; Nie, H.; Yao, Z.; Huang, S. Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement. ACS Appl. Mater. Inter. 2011, 3, 2601–2606.

    Article  CAS  Google Scholar 

  25. Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochim. Acta 2007, 52, 3732–3738.

    Article  CAS  Google Scholar 

  26. Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J. Electroanal. Chem. 2006, 590, 152–160.

    Article  CAS  Google Scholar 

  27. Sun, W.; Hsu, A.; Chen, R. Carbon-supported tetragonal MnOOH catalysts for oxygen reduction reaction in alkaline media. J. Power Sources 2011, 196, 627–635.

    Article  CAS  Google Scholar 

  28. Yong, Q.; Shunbao, L.; Fenglei, G. Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen. Mater. Lett. 2011, 65, 56–58.

    Article  Google Scholar 

  29. Roche, I.; Chainet, E.; Vondrak, J.; Chatenet, M. Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium. J. Appl. Electrochem. 2008, 38, 1195–1201.

    Article  CAS  Google Scholar 

  30. Klapste, B.; Vondrak, J.; Velicka, J. MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides. Electrochim. Acta 2002, 47, 2365–2369.

    Article  CAS  Google Scholar 

  31. Vondrak, J.; Klapste, B.; Velicka, J.; Sedlarikova, M.; Reiter, J.; Roche, I.; Chainet, E.; Fauvarque, J. F.; Chatenet, M. Electrochemical activity of manganese oxide/carbon-based electrocatalysts. J. New Mater. Electrochem. Syst. 2005, 8, 209–212.

    CAS  Google Scholar 

  32. Rios, E.; Gautier, J. L.; Poillerat, G.; Chartier, P. Mixed valency spinel oxides of transition metals and electrocatalysis: Case of the MnxCo3−x O4 system. Electrochim. Acta 1998, 44, 1491–1497.

    Article  CAS  Google Scholar 

  33. Zhou, J. G.; Wang, J.; Sun, C. L.; Maley, J. M.; Sammynaiken, R.; Sham, T. K.; Pong, W. F. Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J. Mater. Chem. 2011, 21, 14622–14630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Additional information

These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Liang, Y., Wang, H. et al. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 5, 718–725 (2012). https://doi.org/10.1007/s12274-012-0256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0256-8

Keywords

Navigation