Skip to main content
Log in

Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Uniform thickness and colloidal-stable CdS quantum disks have been reproducibly prepared using cadmium acetate, elemental sulfur, fatty acids and octadecene as the starting materials without any size/shape sorting. The thickness could be varied between 1.2 and 2.2 nm, i.e., 4.5, 5.5, 6.5 and 7.5 monolayers of CdS along the thickness direction. These single crystalline disks with lateral dimensions between 20 and 100 nm adopted the zinc blende crystal structure with 〈100〉 (possibly mixed with 〈111〉) as the thickness direction. The basal planes and side facets were terminated with cadmium carboxylates, which dictated the thicknesses to be half a monolayer more than an integer number. Formation of CdS quantum disks probably occurs through a “nucleation-growth” mechanism, instead of aggregation of pre-formed magic clusters. Completion of a full monolayer along the lateral direction was found to be rather fast if two-dimensional nucleation was initiated on existing disks, which helped formation of atomically flat and thickness-controlled disks. As disk thickness decreased, the crystal lattice was found to dilate gradually, which has not been observed with CdS quantum dots. Compared with CdS quantum dots and rods, the disks displayed weakened quantum confinement and their photoluminescence lifetime (tens of picoseconds) was about two orders of magnitude shorter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  CAS  Google Scholar 

  2. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

    Article  CAS  Google Scholar 

  3. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  CAS  Google Scholar 

  4. Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

    Article  CAS  Google Scholar 

  5. Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  CAS  Google Scholar 

  6. Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

    Article  CAS  Google Scholar 

  7. Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274–278.

    Article  CAS  Google Scholar 

  8. Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C., et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

    Article  CAS  Google Scholar 

  9. Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

    Article  CAS  Google Scholar 

  10. Ithurria, S.; Bousquet, G.; Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011, 133, 3070–3077.

    Article  CAS  Google Scholar 

  11. Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

    Article  CAS  Google Scholar 

  12. Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G., et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Edit. 2009, 48, 6861–6864.

    Article  CAS  Google Scholar 

  13. Liu, Y. H.; Wayman, V. L.; Gibbons, P. C.; Loomis, R. A.; Buhro, W. E. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Lett. 2010, 10, 352–357.

    Article  CAS  Google Scholar 

  14. Liu, Y. H.; Wang, F.; Wang, Y.; Gibbons, P. C.; Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 2011, 133, 17005–17013.

    Article  CAS  Google Scholar 

  15. Li, Z.; Peng, X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

    Article  CAS  Google Scholar 

  16. Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

    Article  CAS  Google Scholar 

  17. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  CAS  Google Scholar 

  18. Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  CAS  Google Scholar 

  19. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

    Article  CAS  Google Scholar 

  20. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electro-luminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

    Article  CAS  Google Scholar 

  21. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    Article  CAS  Google Scholar 

  22. Pradhan, N.; Xu, H. F.; Peng, X. G. Colloidal CdSe quantum wires by oriented attachment. Nano Lett. 2006, 6, 720–724.

    Article  CAS  Google Scholar 

  23. Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Edit. 2002, 41, 2368–2371.

    Article  CAS  Google Scholar 

  24. Li, Z.; Ji, Y.; Xie, R.; Grisham, S. Y.; Peng, X. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248–17256.

    Article  CAS  Google Scholar 

  25. Ouyang, J.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

    Article  CAS  Google Scholar 

  26. Li, M. J.; Ouyang, J. Y.; Ratcliffe, C. I.; Pietri, L.; Wu, X. H.; Leek, D. M.; Moudrakovski, I.; Lin, Q.; Yang, B.; Yu, K. CdS Magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation. ACS Nano 2009, 3, 3832–3838.

    Article  CAS  Google Scholar 

  27. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  CAS  Google Scholar 

  28. Mullin, J. W. Crystallization. Butterworth-Heinemann: Oxford, 2004.

    Google Scholar 

  29. Krishna, M. V. R.; Friesner, R. A. Quantum confinement effects in semiconductor clusters. J. Chem. Phys. 1991, 95, 8309–8322.

    Article  CAS  Google Scholar 

  30. Pandey, A.; Guyot-Sionnest, P. Intraband spectroscopy and band offsets of colloidal II–VI core/shell structures. J. Chem. Phys. 2007, 127, 104710.

    Article  Google Scholar 

  31. Efros, A. L.; Rosen, M. Quantum size level structure of narrow-gap semiconductor nanocrystals: Effect of band coupling. Phys. Rev. B 1998, 58, 7120–7135.

    Article  CAS  Google Scholar 

  32. Kang, C. -C.; Lai, C. -W.; Peng, H. -C.; Shyue, J. -J.; Chou, P. -T. Surfactant- and temperature-controlled CdS nanowire formation. Small 2007, 3, 1882–1885.

    Article  CAS  Google Scholar 

  33. Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity. J. Am. Chem. Soc. 2010, 132, 1819–1821.

    Article  CAS  Google Scholar 

  34. Dandrea, A.; Delsole, R. D. Excitons in semiconductor confined systems. Solid State Commun. 1990, 74, 1121–1124.

    Article  CAS  Google Scholar 

  35. Yoffe, A. D. Low-dimensional systems-quantum-size effects and electronic-properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-2-dimensional systems. Adv. Phys. 1993, 42, 173–262.

    Article  CAS  Google Scholar 

  36. Yu, Z. H.; Li, J. B.; O’Connor, D. B.; Wang, L. W.; Barbara, P. F. Large resonant stokes shift in CdS nanocrystals. J. Phys. Chem. B 2003, 107, 5670–5674.

    Article  CAS  Google Scholar 

  37. Yang, B. Q.; Schneeloch, J. E.; Pan, Z. W.; Furis, M.; Achermann, M. Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence. Phys. Rev. B 2010, 81, 073401.

    Article  Google Scholar 

  38. Boens, N.; Qin, W.; Basaric, N.; Hofkens, J.; Ameloot, M.; Pouget, J.; Lefevre, J. -P.; Valeur, B.; Gratton, E.; vandeVen, M., et al. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal. Chem. 2007, 79, 2137–2149.

    Article  CAS  Google Scholar 

  39. van Driel, A. F.; Allan, G.; Delerue, C.; Lodahl, P.; Vos, W. L.; Vanmaekelbergh, D. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states. Phys. Rev. Lett. 2005, 95, 236804.

    Article  Google Scholar 

  40. Donega, C. D. M.; Bode, M.; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.

    Article  Google Scholar 

  41. Henry, C. H.; Nassau, K. Lifetimes of bound excitons in CdS. Phys. Rev. B 1970, 1, 1628–1634.

    Article  Google Scholar 

  42. Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Observation of the dark exciton in CdSe quantum dots. Phys. Rev. Lett. 1995, 75, 3728–3731.

    Article  CAS  Google Scholar 

  43. Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856.

    Article  CAS  Google Scholar 

  44. Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B 1996, 53, 16347–16354.

    Article  CAS  Google Scholar 

  45. Fomenko, V.; Nesbitt, D. J. Solution control of radiative and nonradiative lifetimes: A novel contribution to quantum dot blinking suppression. Nano Lett. 2008, 8, 287–293.

    Article  CAS  Google Scholar 

  46. Hannah, D. C.; Dunn, N. J.; Ithurria, S.; Talapin, D. V.; Chen, L. X.; Pelton, M.; Schatz, G. C.; Schaller, R. D. Observation of size-dependent thermalization in CdSe nano-crystals using time-resolved photoluminescence spectroscopy. Phys. Rev. Lett. 2011, 107, 177403.

    Article  Google Scholar 

  47. Deveaud, B.; Clerot, F.; Roy, N.; Satzke, K.; Sermage, B.; Katzer, D. S. Enhanced radiative recombination of free-excitons in GaAs quantum-wells. Phys. Rev. Lett. 1991, 67, 2355–2358.

    Article  CAS  Google Scholar 

  48. Deveaud, B.; Clerot, F.; Roy, N.; Sermage, B.; Katzer, D. S. Enhanced radiative recombination of free-excitons in GaAs quantum-wells. Surf. Sci. 1992, 263, 491–495.

    Article  CAS  Google Scholar 

  49. Deveaud, B.; Clerot, F.; Sermage, B.; Dumas, C.; Katzer, D. S. In Optical Phenomena in Semiconductor Structures of Reduced Dimensions, Nato Advanced Research Workshop on Frontiers of Optical Phenomena in Semicondutor Structures of Reduced Dimensions, Dordrecht; Boston, 1993; Lockwood, D. J.; Pinczuk, A.; North Atlantic Treaty Organization. Scientific Affairs, D. Eds. Kluwer Academic: Dordrecht; Boston, 1993; pp. 129–144.

    Google Scholar 

  50. Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Sauer, M.; Weiss, S. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett. 2001, 26, 825–827.

    Article  CAS  Google Scholar 

  51. Berezin, M. Y.; Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 2010, 110, 2641–2684.

    Article  CAS  Google Scholar 

  52. Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.

    Article  CAS  Google Scholar 

  53. Smit, K. J.; Ghiggino, K. P. Flash-photolysis studies of a sulfonated bis-styryl biphenyl fluorescent dye. Dyes Pigments 1990, 13, 45–53.

    Article  CAS  Google Scholar 

  54. Fletcher, A. N.; Bliss, D. E.; Kauffman, J. M. Lasing and fluorescent characteristics of 9 new, flashlamp-pumpable, coumarin dyes in ethanol and ethanol-water. Opt. Commun. 1983, 47, 57–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Qin, H., Guzun, D. et al. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 5, 337–351 (2012). https://doi.org/10.1007/s12274-012-0214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0214-5

Keywords

Navigation