Skip to main content
Log in

CT-Based Myocardial Perfusion Imaging-Practical Considerations: Acquisition, Image Analysis, Interpretation, and Challenges

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Methods for non-invasive, cardiac risk assessment have historically relied on exercise stress testing with or without echocardiography or radionuclide imaging and pharmacological stress testing when appropriate. More recently, CT-based modalities like CT angiography (CTA) have been shown to reliably differentiate low from high-risk coronary disease. The advent of newer CT technology now allows for CT-based myocardial perfusion imaging (CTP) that provides functional information, that when analyzed with anatomic data from CTA, can provide a comprehensive risk assessment strategy. In this review, we discuss the research and implementation; as well as the quantitative, semiquantitative, and qualitative methods of image analysis of CT-based perfusion. We also discuss the present state of technology and challenges associated with the methodology. In each section, when appropriate, we provide some information regarding the translation of these methods being utilized in the international, multicenter CORE320 study that is evaluating the combined CT-based imaging (CTA and CTP) strategy of risk assessment in comparison to the combined reference standard of radionuclide myocardial perfusion imaging and invasive angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klocke, F. J., Baird, M. G., Lorell, B. H., Bateman, T. M., Messer, J. V., Berman, D. S., et al. (2003). ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation, 108(11), 1404–1418. doi:10.1161/01.CIR.0000080946.42225.4D.

    Article  PubMed  Google Scholar 

  2. Iskandrian, A., Chae, S., Heo, J., Stanberry, C., Wasserleben, V., & Cave, V. (1993). Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. Journal of the American College of Cardiology, 22(3), 665–670.

    Article  PubMed  CAS  Google Scholar 

  3. Hachamovitch, R., Hayes, S. W., Friedman, J. D., Cohen, I., & Berman, D. S. (2003). Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation, 107(23), 2900–2907. doi:10.1161/01.cir.0000072790.23090.41.

    Article  PubMed  Google Scholar 

  4. Miller, J. M., Rochitte, C. E., Dewey, M., Arbab-Zadeh, A., Niinuma, H., Gottlieb, I., et al. (2008). Diagnostic performance of coronary angiography by 64-row CT. The New England Journal of Medicine, 359(22), 2324–2336. doi:10.1056/NEJMoa0806576.

    Article  PubMed  CAS  Google Scholar 

  5. Budoff, M. J., Shaw, L. J., Liu, S. T., Weinstein, S. R., Mosler, T. P., Tseng, P. H., et al. (2007). Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. Journal of the American College of Cardiology, 49(18), 1860–1870. doi:10.1016/j.jacc.2006.10.079.

    Article  PubMed  Google Scholar 

  6. Meijboom, W. B., Meijs, M. F., Schuijf, J. D., Cramer, M. J., Mollet, N. R., van Mieghem, C. A., et al. (2008). Diagnostic accuracy of 64-slice computed tomography coronary angiography: A prospective, multicenter, multivendor study. Journal of the American College of Cardiology, 52(25), 2135–2144. doi:10.1016/j.jacc.2008.08.058.

    Article  PubMed  Google Scholar 

  7. Boden, W. E., O'Rourke, R. A., Teo, K. K., Hartigan, P. M., Maron, D. J., Kostuk, W. J., et al. (2007). Optimal medical therapy with or without PCI for stable coronary disease. The New England Journal of Medicine, 356(15), 1503–1516. doi:10.1056/NEJMoa070829.

    Article  PubMed  CAS  Google Scholar 

  8. Tonino, P. A., De Bruyne, B., Pijls, N. H., Siebert, U., Ikeno, F., Van't Veer, M., et al. (2009). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. The New England Journal of Medicine, 360(3), 213–224. doi:10.1056/NEJMoa0807611.

    Article  PubMed  CAS  Google Scholar 

  9. Pijls, N. H., Fearon, W. F., Tonino, P. A., Siebert, U., Ikeno, F., Bornschein, B., et al. (2010). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. Journal of the American College of Cardiology, 56(3), 177–184. doi:10.1016/j.jacc.2010.04.012.

    Article  PubMed  Google Scholar 

  10. Tonino, P. A., Fearon, W. F., De Bruyne, B., Oldroyd, K. G., Leesar, M. A., Ver Lee, P. N., et al. (2010). Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. Journal of the American College of Cardiology, 55(25), 2816–2821. doi:10.1016/j.jacc.2009.11.096.

    Article  PubMed  Google Scholar 

  11. Rispler, S., Keidar, Z., Ghersin, E., Roguin, A., Soil, A., Dragu, R., et al. (2007). Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. Journal of the American College of Cardiology, 49(10), 1059–1067. doi:10.1016/j.jacc.2006.10.069.

    Article  PubMed  Google Scholar 

  12. Gaemperli, O., Husmann, L., Schepis, T., Koepfli, P., Valenta, I., Jenni, W., et al. (2009). Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: A potential gatekeeper for coronary revascularization? European Heart Journal, 30(23), 2921–2929. doi:10.1093/eurheartj/ehp304.

    Article  PubMed  Google Scholar 

  13. Achenbach, S. (2009). Stress computed tomography myocardial perfusion: Steps, questions, and layers. Journal of the American College of Cardiology, 54(12), 1085–1087. doi:10.1016/j.jacc.2009.05.048.

    Article  PubMed  Google Scholar 

  14. Rumberger, J. A., & Bell, M. R. (1992). Measurement of myocardial perfusion and cardiac output using intravenous injection methods by ultrafast (cine) computed tomography. Investigative Radiology, 27(Suppl 2), S40–S46.

    PubMed  Google Scholar 

  15. Rumberger, J. A., Feiring, A. J., Lipton, M. J., Higgins, C. B., Ell, S. R., & Marcus, M. L. (1987). Use of ultrafast computed tomography to quantitate regional myocardial perfusion: A preliminary report. Journal of the American College of Cardiology, 9(1), 59–69.

    Article  PubMed  CAS  Google Scholar 

  16. George, R. T., Jerosch-Herold, M., Silva, C., Kitagawa, K., Bluemke, D. A., Lima, J. A., et al. (2007). Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Investigative Radiology, 42(12), 815–822. doi:10.1097/RLI.0b013e318124a884.

    Article  PubMed  Google Scholar 

  17. George, R. T., Ichihara, T., Lima, J. A., & Lardo, A. C. (2010). A method for reconstructing the arterial input function during helical CT: Implications for myocardial perfusion distribution imaging. Radiology, 255(2), 396–404. doi:10.1148/radiol.10081121.

    Article  PubMed  Google Scholar 

  18. George, R. T., Arbab-Zadeh, A., Miller, J. M., Kitagawa, K., Chang, H. J., Bluemke, D. A., et al. (2009). Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: A pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging, 2(3), 174–182. doi:10.1161/CIRCIMAGING.108.813766.

    Article  PubMed  Google Scholar 

  19. Blankstein, R., Shturman, L. D., Rogers, I. S., Rocha-Filho, J. A., Okada, D. R., Sarwar, A., et al. (2009). Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. Journal of the American College of Cardiology, 54(12), 1072–1084. doi:10.1016/j.jacc.2009.06.014.

    Article  PubMed  Google Scholar 

  20. Cury, R. C., Magalhaes, T. A., Borges, A. C., Shiozaki, A. A., Lemos, P. A., Junior, J. S., et al. (2010). Dipyridamole stress and rest myocardial perfusion by 64-detector row computed tomography in patients with suspected coronary artery disease. The American Journal of Cardiology, 106(3), 310–315. doi:10.1016/j.amjcard.2010.03.025.

    Article  PubMed  Google Scholar 

  21. Bastarrika, G., Ramos-Duran, L., Rosenblum, M. A., Kang, D. K., Rowe, G. W., & Schoepf, U. J. (2010). Adenosine-stress dynamic myocardial CT perfusion imaging: Initial clinical experience. Investigative Radiology, 45(6), 306–313. doi:10.1097/RLI.0b013e3181dfa2f2.

    PubMed  CAS  Google Scholar 

  22. Bastarrika, G., Ramos-Duran, L., Schoepf, U. J., Rosenblum, M. A., Abro, J. A., Brothers, R. L., et al. (2010). Adenosine-stress dynamic myocardial volume perfusion imaging with second generation dual-source computed tomography: Concepts and first experiences. Journal of Cardiovascular Computed Tomography, 4(2), 127–135. doi:10.1016/j.jcct.2010.01.015.

    Article  PubMed  Google Scholar 

  23. George R, Arbab-Zadeh, A., Cerci, RJ., Vavere, AL., Kitagawa, K., Dewey, M., Rochitte, CE., Arai, AE., Paul, N., Rybicki, RJ., Lardo, AC., Clouse, ME., Lima, J., A., C. (2011) Diagnostic performance of combined non-invasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: The computed tomography angiography and perfusion methods of the CORE320 multicenter, multinational diagnostic study. Am J Roentgenol (in press)

  24. Valdiviezo, C., Ambrose, M., Mehra, V., Lardo, A. C., Lima, J. A., & George, R. T. (2010). Quantitative and qualitative analysis and interpretation of CT perfusion imaging. Journal of Nuclear Cardiology, 17(6), 1091–1100. doi:10.1007/s12350-010-9291-6.

    Article  PubMed  Google Scholar 

  25. Achenbach, S., Ropers, D., Kuettner, A., Flohr, T., Ohnesorge, B., Bruder, H., et al. (2006). Contrast-enhanced coronary artery visualization by dual-source computed tomography–initial experience. European Journal of Radiology, 57(3), 331–335. doi:10.1016/j.ejrad.2005.12.017.

    Article  PubMed  Google Scholar 

  26. Choi, S. I., George, R. T., Schuleri, K. H., Chun, E. J., Lima, J. A., & Lardo, A. C. (2009). Recent developments in wide-detector cardiac computed tomography. The International Journal of Cardiovascular Imaging, 25(Suppl 1), 23–29. doi:10.1007/s10554-009-9443-4.

    Article  PubMed  Google Scholar 

  27. Bastarrika, G., De Cecco, C. N., Arraiza, M., Mastrobuoni, S., Pueyo, J. C., Ubilla, M., et al. (2008). Dual-source CT for visualization of the coronary arteries in heart transplant patients with high heart rates. AJR. American Journal of Roentgenology, 191(2), 448–454. doi:10.2214/AJR.07.3512.

    Article  PubMed  Google Scholar 

  28. Johnson, T. R., Krauss, B., Sedlmair, M., Grasruck, M., Bruder, H., Morhard, D., et al. (2007). Material differentiation by dual energy CT: Initial experience. European Radiology, 17(6), 1510–1517. doi:10.1007/s00330-006-0517-6.

    Article  PubMed  Google Scholar 

  29. Feuerlein, S., Roessl, E., Proksa, R., Martens, G., Klass, O., Jeltsch, M., et al. (2008). Multienergy photon-counting K-edge imaging: Potential for improved luminal depiction in vascular imaging. Radiology, 249(3), 1010–1016. doi:10.1148/radiol.2492080560.

    Article  PubMed  Google Scholar 

  30. Rocha-Filho, J. A., Blankstein, R., Shturman, L. D., Bezerra, H. G., Okada, D. R., Rogers, I. S., et al. (2010). Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology, 254(2), 410–419. doi:10.1148/radiol.09091014.

    Article  PubMed  Google Scholar 

  31. Kitagawa, K., George, R. T., Arbab-Zadeh, A., Lima, J. A., & Lardo, A. C. (2010). Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion. Radiology, 256(1), 111–118. doi:10.1148/radiol.10091399.

    Article  PubMed  Google Scholar 

  32. Christian, T. F., Rettmann, D. W., Aletras, A. H., Liao, S. L., Taylor, J. L., Balaban, R. S., et al. (2004). Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology, 232(3), 677–684. doi:10.1148/radiol.2323030573.

    Article  PubMed  Google Scholar 

  33. Hsu, L. Y., Rhoads, K. L., Holly, J. E., Kellman, P., Aletras, A. H., & Arai, A. E. (2006). Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. Journal of Magnetic Resonance Imaging, 23(3), 315–322. doi:10.1002/jmri.20502.

    Article  PubMed  Google Scholar 

  34. Kroll, K., Wilke, N., Jerosch-Herold, M., Wang, Y., Zhang, Y., Bache, R. J., et al. (1996). Modeling regional myocardial flows from residue functions of an intravascular indicator. The American Journal of Physiology, 271(4 Pt 2), H1643–H1655.

    PubMed  CAS  Google Scholar 

  35. Tsuchida, T., Sadato, N., Yonekura, Y., Yamamoto, K., Waki, A., Sugimoto, K., et al. (1997). Quantification of regional cerebral blood flow with continuous infusion of technetium-99 m-ethyl cysteinate dimer. Journal of Nuclear Medicine, 38(11), 1699–1702.

    PubMed  CAS  Google Scholar 

  36. Hackstein, N., Bauer, J., Hauck, E. W., Ludwig, M., Kramer, H. J., & Rau, W. S. (2003). Measuring single-kidney glomerular filtration rate on single-detector helical CT using a two-point Patlak plot technique in patients with increased interstitial space. AJR. American Journal of Roentgenology, 181(1), 147–156.

    PubMed  Google Scholar 

  37. Patlak, C. S., Blasberg, R. G., & Fenstermacher, J. D. (1983). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Journal of Cerebral Blood Flow and Metabolism, 3(1), 1–7.

    Article  PubMed  CAS  Google Scholar 

  38. Ichihara, T., GR, Lima, J., A., C. et al. (2009). Quantitative analysis of first pass contrast enhanced myocardial perfusion multidetector CT using a patlak plot method and extraction fraction correction during adenosine stress. Paper presented at: Nuclear Science Symposium Conference Record IEEE 2009

  39. Daghini, E., Primak, A. N., Chade, A. R., Zhu, X., Ritman, E. L., McCollough, C. H., et al. (2007). Evaluation of porcine myocardial microvascular permeability and fractional vascular volume using 64-slice helical computed tomography (CT). Investigative Radiology, 42(5), 274–282. doi:10.1097/01.rli.0000258086.78179.90.

    Article  PubMed  Google Scholar 

  40. Keijer, J. T., van Rossum, A. C., van Eenige, M. J., Bax, J. J., Visser, F. C., Teule, J. J., et al. (2000). Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: Quantitative comparison with (201)Thallium-SPECT and coronary angiography. Journal of Magnetic Resonance Imaging, 11(6), 607–615. doi:10.1002/1522-2586(200006)11:6<607::AID-JMRI6>3.0.CO;2-7.

    Article  PubMed  CAS  Google Scholar 

  41. Kimura, F., Matsuo, Y., Nakajima, T., Nishikawa, T., Kawamura, S., Sannohe, S., et al. (2010). Myocardial fat at cardiac imaging: How can we differentiate pathologic from physiologic fatty infiltration? Radiographics, 30(6), 1587–1602. doi:10.1148/rg.306105519.

    Article  PubMed  Google Scholar 

  42. Bell, M. R., Lerman, L. O., & Rumberger, J. A. (1999). Validation of minimally invasive measurement of myocardial perfusion using electron beam computed tomography and application in human volunteers. Heart, 81(6), 628–635.

    PubMed  CAS  Google Scholar 

  43. Achenbach, S., Giesler, T., Ropers, D., Ulzheimer, S., Derlien, H., Schulte, C., et al. (2001). Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation, 103(21), 2535–2538.

    PubMed  CAS  Google Scholar 

  44. Raff, G. L., Gallagher, M. J., O'Neill, W. W., & Goldstein, J. A. (2005). Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. Journal of the American College of Cardiology, 46(3), 552–557. doi:10.1016/j.jacc.2005.05.056.

    Article  PubMed  Google Scholar 

  45. George, R. T., Silva, C., Cordeiro, M. A., DiPaula, A., Thompson, D. R., McCarthy, W. F., et al. (2006). Multidetector computed tomography myocardial perfusion imaging during adenosine stress. Journal of the American College of Cardiology, 48(1), 153–160. doi:10.1016/j.jacc.2006.04.014.

    Article  PubMed  Google Scholar 

  46. Mahnken, A. H., Bruners, P., Katoh, M., Wildberger, J. E., Gunther, R. W., & Buecker, A. (2006). Dynamic multi-section CT imaging in acute myocardial infarction: Preliminary animal experience. European Radiology, 16(3), 746–752. doi:10.1007/s00330-005-0057-5.

    Article  PubMed  Google Scholar 

  47. Ko, B., S., Cameron, J., D., Leung, M., Lehman, S., Hope, S., Crossett, M., Troupis, J., Antonis, P., Meredith, I., T., DeFrance, T., Seneviratne, S. (2010). Abstract 17548: Computed tomography stress myocardial perfusion for diagnosing myocardial ischemia - a comparison with quantitative coronary angiography and fractional flow reserve. Circulation 122 (21_MeetingAbstracts):A17548

  48. Taillefer, R., Ahlberg, A. W., Masood, Y., White, C. M., Lamargese, I., Mather, J. F., et al. (2003). Acute beta-blockade reduces the extent and severity of myocardial perfusion defects with dipyridamole Tc-99 m sestamibi SPECT imaging. Journal of the American College of Cardiology, 42(8), 1475–1483.

    Article  PubMed  CAS  Google Scholar 

  49. Marin-Neto, J., & Maciel, B. (2010). Use of β-blockers should not “block” nuclear myocardial perfusion imaging with vasodilator stress. Curr Cardiovasc Imaging Rep, 3(2), 54–56. doi:10.1007/s12410-010-9009-9.

    Article  Google Scholar 

  50. Yoon, A. J., Melduni, R. M., Duncan, S. A., Ostfeld, R. J., & Travin, M. I. (2009). The effect of beta-blockers on the diagnostic accuracy of vasodilator pharmacologic SPECT myocardial perfusion imaging. Journal of Nuclear Cardiology, 16(3), 358–367. doi:10.1007/s12350-009-9066-0.

    Article  PubMed  Google Scholar 

  51. Rodriguez-Granillo, G. A., Rosales, M. A., Degrossi, E., & Rodriguez, A. E. (2010). Signal density of left ventricular myocardial segments and impact of beam hardening artifact: Implications for myocardial perfusion assessment by multidetector CT coronary angiography. The International Journal of Cardiovascular Imaging, 26(3), 345–354. doi:10.1007/s10554-009-9531-5.

    Article  PubMed  Google Scholar 

  52. Mori, S., Endo, M., Komatsu, S., Kandatsu, S., Yashiro, T., & Baba, M. (2006). A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Physics in Medicine and Biology, 51(16), 3953–3965. doi:10.1088/0031-9155/51/16/005.

    Article  PubMed  Google Scholar 

  53. Christian, T. F., Frankish, M. L., Sisemoore, J. H., Christian, M. R., Gentchos, G., Bell, S. P., et al. (2010). Myocardial perfusion imaging with first-pass computed tomographic imaging: Measurement of coronary flow reserve in an animal model of regional hyperemia. Journal of Nuclear Cardiology, 17(4), 625–630. doi:10.1007/s12350-010-9206-6.

    Article  PubMed  Google Scholar 

  54. Cormode, D. P., Roessl, E., Thran, A., Skajaa, T., Gordon, R. E., Schlomka, J.-P., et al. (2010). Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles1. Radiology, 256(3), 774–782. doi:10.1148/radiol.10092473.

    Article  PubMed  Google Scholar 

  55. Pan, D., Roessl, E., Schirra, C., O., Thran, A., Schlomka, J.-P., Caruthers S., D., Scott, M., J., Senpan, A., Gaffney, P.,J., Wickline, S., A., Proksa, R., Lanza, G., M. (2010) Abstract 18741: Spectral CT imaging of coronary ruptured plaque: A step closer to the clinic. Circulation 122 (21_MeetingAbstracts):A18741

Download references

Conflicts of Interest

Drs. George, Lima, and Lardo receive research funding from Toshiba Medical Systems. Drs. George and Lima receive research funding and serve on the advisory board of Astellas Pharma US, Inc. Dr. George is a consultant for ICON medical imaging. The terms of these arrangements are managed by Johns Hopkins University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehra, V.C., Ambrose, M., Valdiviezo-Schlomp, C. et al. CT-Based Myocardial Perfusion Imaging-Practical Considerations: Acquisition, Image Analysis, Interpretation, and Challenges. J. of Cardiovasc. Trans. Res. 4, 437–448 (2011). https://doi.org/10.1007/s12265-011-9286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9286-y

Keywords

Navigation