Skip to main content
Log in

The Role of Cardiac PET in Translating Basic Science into the Clinical Arena

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Non-invasive imaging has become fundamental in translating findings from basic science research into clinical applications. In this aspect, positron-emission tomography (PET) offers important advantages over other common imaging modalities like single-photon emission computed tomography, computed tomography, and magnetic resonance imaging (MRI), since PET provides superior detection sensitivity in the evaluation of different cardiovascular targets and pathways at the cellular and subcellular level, and because it is a well-established technique for absolute image quantification. The development and the introduction of dedicated small animal PET systems have greatly facilitated and contributed to advancements in the translation of novel radio-labeled compounds from experimental to clinical practice. The scope of the present article is to review the most relevant and successful PET applications in cardiovascular translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schelbert, H. R., Phelps, M. E., Hoffman, E. J., Huang, S. C., Selin, C. E., & Kuhl, D. E. (1979). Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. The American Journal of Cardiology, 43(2), 209–218.

    Article  PubMed  CAS  Google Scholar 

  2. Gould, K. L., Schelbert, H. R., Phelps, M. E., & Hoffman, E. J. (1979). Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed tomography in intact dogs. The American Journal of Cardiology, 43(2), 200–208.

    Article  PubMed  CAS  Google Scholar 

  3. Shah, A., Schelbert, H. R., Schwaiger, M., et al. (1985). Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomography in intact dogs. Journal of the American College of Cardiology, 5(1), 92–100.

    Article  PubMed  CAS  Google Scholar 

  4. Bergmann, S. R., Hack, S., Tewson, T., Welch, M. J., & Sobel, B. E. (1980). The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation, 61(1), 34–43.

    PubMed  CAS  Google Scholar 

  5. Selwyn, A. P., Allan, R. M., L'Abbate, A., et al. (1982). Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. The American Journal of Cardiology, 50(1), 112–121.

    Article  PubMed  CAS  Google Scholar 

  6. Mullani, N. A., Goldstein, R. A., Gould, K. L., et al. (1983). Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. Journal of Nuclear Medicine, 24(10), 898–906.

    PubMed  CAS  Google Scholar 

  7. Herrero, P., Markham, J., Shelton, M. E., Weinheimer, C. J., & Bergmann, S. R. (1990). Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography exploration of a mathematical model. Circulation, 82(4), 1377–1386.

    Article  PubMed  CAS  Google Scholar 

  8. Lautamaki, R., George, R. T., Kitagawa, K., et al. (2009). Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. European Journal of Nuclear Medicine and Molecular Imaging, 36(4), 576–586.

    Article  PubMed  Google Scholar 

  9. Bergmann, S. R., Fox, K. A., Rand, A. L., et al. (1984). Quantification of regional myocardial blood flow in vivo with H215O. Circulation, 70(4), 724–733.

    Article  PubMed  CAS  Google Scholar 

  10. Nandalur, K. R., Dwamena, B. A., Choudhri, A. F., Nandalur, S. R., Reddy, P., & Carlos, R. C. (2008). Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Academic Radiology, 15(4), 444–451.

    Article  PubMed  Google Scholar 

  11. Underwood, S. R., Anagnostopoulos, C., Cerqueira, M., et al. (2004). Myocardial perfusion scintigraphy: the evidence. European Journal of Nuclear Medicine and Molecular Imaging, 31(2), 261–291.

    Article  PubMed  CAS  Google Scholar 

  12. Czernin, J., Muller, P., Chan, S., et al. (1993). Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation, 88(1), 62–69.

    PubMed  CAS  Google Scholar 

  13. Uren, N. G., Melin, J. A., De Bruyne, B., Wijns, W., Baudhuin, T., & Camici, P. G. (1994). Relation between myocardial blood flow and the severity of coronary–artery stenosis. The New England Journal of Medicine, 330(25), 1782–1788.

    Article  PubMed  CAS  Google Scholar 

  14. Di Carli, M., Czernin, J., Hoh, C. K., et al. (1995). Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation, 91(7), 1944–1951.

    PubMed  Google Scholar 

  15. Anagnostopoulos, C., Almonacid, A., El Fakhri, G., et al. (2008). Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. European Journal of Nuclear Medicine and Molecular Imaging, 35(9), 1593–1601.

    Article  PubMed  Google Scholar 

  16. Herzog, B. A., Husmann, L., Valenta, I., et al. (2009). Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. Journal of the American College of Cardiology, 54(2), 150–156.

    Article  PubMed  Google Scholar 

  17. Bengel, F. M., Higuchi, T., Javadi, M. S., & Lautamaki, R. (2009). Cardiac positron emission tomography. Journal of the American College of Cardiology, 54(1), 1–15.

    Article  PubMed  Google Scholar 

  18. Nekolla, S. G., Reder, S., Saraste, A., et al. (2009). Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation, 119(17), 2333–2342.

    Article  PubMed  CAS  Google Scholar 

  19. Tamarappoo, B., Nakazato, R., Shmilovich, H., et al. (2010). Comparison of myocardial stress perfusion defect assessment using 99mTc sestamibi SPECT vs BMS747158 PET. J Nucl Med, 51(2_MeetingAbstracts), 153. Meeting Abstracts, May 1, 2010.

    Google Scholar 

  20. Rundqvist, B., Elam, M., Bergmann-Sverrisdottir, Y., Eisenhofer, G., & Friberg, P. (1997). Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation, 95(1), 169–175.

    PubMed  CAS  Google Scholar 

  21. Wecker, L., Crespo, L., Dunaway, G., Faingold, C., & Watts, S. (2009). Brody’s human pharmacology: molecular to clinical (5ed). Philadelphia, PA: Mosby/Elsevier.

    Google Scholar 

  22. Rosenspire, K. C., Haka, M. S., Van Dort, M. E., et al. (1990). Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. Journal of Nuclear Medicine, 31(8), 1328–1334.

    PubMed  CAS  Google Scholar 

  23. DeGrado, T. R., Hutchins, G. D., Toorongian, S. A., Wieland, D. M., & Schwaiger, M. (1993). Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. Journal of Nuclear Medicine, 34(8), 1287–1293.

    PubMed  CAS  Google Scholar 

  24. Tipre, D. N., Fox, J. J., Holt, D. P., et al. (2008). In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. Journal of Nuclear Medicine, 49(7), 1189–1195.

    Article  PubMed  Google Scholar 

  25. Raffel, D. M., Chen, W., Sherman, P. S., Gildersleeve, D. L., & Jung, Y. W. (2006). Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. Journal of Nuclear Medicine, 47(9), 1490–1496.

    PubMed  CAS  Google Scholar 

  26. Nguyen, N. T., DeGrado, T. R., Chakraborty, P., Wieland, D. M., & Schwaiger, M. (1997). Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. Journal of Nuclear Medicine, 38(5), 780–785.

    PubMed  CAS  Google Scholar 

  27. Rimoldi, O. E., Drake-Holland, A. J., Noble, M. I., & Camici, P. G. (2007). Basal and hyperaemic myocardial blood flow in regionally denervated canine hearts: an in vivo study with positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(2), 197–205.

    Article  PubMed  Google Scholar 

  28. Luisi, A. J., Jr., Suzuki, G., Dekemp, R., et al. (2005). Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. Journal of Nuclear Medicine, 46(8), 1368–1374.

    PubMed  CAS  Google Scholar 

  29. Sasano, T., Abraham, M. R., Chang, K. C., et al. (2008). Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. Journal of the American College of Cardiology, 51(23), 2266–2275.

    Article  PubMed  Google Scholar 

  30. Munch, G., Nguyen, N. T., Nekolla, S., et al. (2000). Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation, 101(5), 516–523.

    PubMed  CAS  Google Scholar 

  31. Bravo, P., Lautamäki, R., Merrill, J., et al. (2010). Characterizing the biology of sympathetic nerve terminal regeneration in the human heart—a multi-tracer PET-CT study. Journal of Nuclear Medicine, 51(Supplement 2), 431.

    Google Scholar 

  32. Schwaiger, M., Kalff, V., Rosenspire, K., et al. (1990). Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation, 82(2), 457–464.

    Article  PubMed  CAS  Google Scholar 

  33. Schwaiger, M., Hutchins, G. D., Kalff, V., et al. (1991). Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. The Journal of Clinical Investigation, 87(5), 1681–1690.

    Article  PubMed  CAS  Google Scholar 

  34. Uberfuhr, P., Ziegler, S., Schwaiblmair, M., Reichart, B., & Schwaiger, M. (2000). Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. European Journal of Cardiothoracic Surgery, 17(2), 161–168.

    Article  PubMed  CAS  Google Scholar 

  35. Bengel, F. M., Ueberfuhr, P., Hesse, T., et al. (2002). Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation, 106(7), 831–835.

    Article  PubMed  Google Scholar 

  36. Bengel, F. M., Ueberfuhr, P., Schiepel, N., Nekolla, S. G., Reichart, B., & Schwaiger, M. (2001). Effect of sympathetic reinnervation on cardiac performance after heart transplantation. The New England Journal of Medicine, 345(10), 731–738.

    Article  PubMed  CAS  Google Scholar 

  37. Odaka, K., von Scheidt, W., Ziegler, S. I., et al. (2001). Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. Journal of Nuclear Medicine, 42(7), 1011–1016.

    PubMed  CAS  Google Scholar 

  38. Schwaiblmair, M., von Scheidt, W., Uberfuhr, P., et al. (1999). Functional significance of cardiac reinnervation in heart transplant recipients. The Journal of Heart and Lung Transplantation, 18(9), 838–845.

    Article  PubMed  CAS  Google Scholar 

  39. Bengel, F. M., Ueberfuhr, P., Ziegler, S. I., Nekolla, S., Reichart, B., & Schwaiger, M. (1999). Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation, 99(14), 1866–1871.

    PubMed  CAS  Google Scholar 

  40. De Marco, T., Dae, M., Yuen-Green, M. S., et al. (1995). Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. Journal of the American College of Cardiology, 25(4), 927–931.

    Article  PubMed  Google Scholar 

  41. Estorch, M., Camprecios, M., Flotats, A., et al. (1999). Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. Journal of Nuclear Medicine, 40(6), 911–916.

    PubMed  CAS  Google Scholar 

  42. Allman, K. C., Wieland, D. M., Muzik, O., Degrado, T. R., Wolfe, E. R., Jr., & Schwaiger, M. (1993). Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. Journal of the American College of Cardiology, 22(2), 368–375.

    Article  PubMed  CAS  Google Scholar 

  43. Bulow, H. P., Stahl, F., Lauer, B., et al. (2003). Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nuclear Medicine Communications, 24(3), 233–239.

    Article  PubMed  CAS  Google Scholar 

  44. Ungerer, M., Hartmann, F., Karoglan, M., et al. (1998). Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation, 97(2), 174–180.

    PubMed  CAS  Google Scholar 

  45. Pietila, M., Malminiemi, K., Ukkonen, H., et al. (2001). Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. European Journal of Nuclear Medicine, 28(3), 373–376.

    Article  PubMed  CAS  Google Scholar 

  46. Allman, K. C., Stevens, M. J., Wieland, D. M., et al. (1993). Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. Journal of the American College of Cardiology, 22(5), 1425–1432.

    Article  PubMed  CAS  Google Scholar 

  47. Stevens, M. J., Raffel, D. M., Allman, K. C., et al. (1998). Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation, 98(10), 961–968.

    PubMed  CAS  Google Scholar 

  48. Stevens, M. J., Raffel, D. M., Allman, K. C., Schwaiger, M., & Wieland, D. M. (1999). Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism, 48(1), 92–101.

    Article  PubMed  CAS  Google Scholar 

  49. Maser, R. E., Mitchell, B. D., Vinik, A. I., & Freeman, R. (2003). The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care, 26(6), 1895–1901.

    Article  PubMed  Google Scholar 

  50. Valensi, P., Sachs, R. N., Harfouche, B., et al. (2001). Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care, 24(2), 339–343.

    Article  PubMed  CAS  Google Scholar 

  51. Lamoy, M., Bozek, J., Kavosi, M., et al. (2010). Cardiac imaging and uptake mechanism of 18F LMI1195, a novel PET cardiac neuronal imaging agent. Journal of Nuclear Medicine, 51(Supplement 2), 262.

    Google Scholar 

  52. Taha, M., & Lopaschuk, G. D. (2007). Alterations in energy metabolism in cardiomyopathies. Annali Medici, 39(8), 594–607.

    Article  CAS  Google Scholar 

  53. Depre, C., Vanoverschelde, J. L., & Taegtmeyer, H. (1999). Glucose for the heart. Circulation, 99(4), 578–588.

    PubMed  CAS  Google Scholar 

  54. Gallagher, B. M., Ansari, A., Atkins, H., et al. (1977). Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. Journal of Nuclear Medicine, 18(10), 990–996.

    PubMed  CAS  Google Scholar 

  55. Krivokapich, J., Huang, S. C., Phelps, M. E., et al. (1982). Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose. The American Journal of Physiology, 243(6), H884–895.

    PubMed  CAS  Google Scholar 

  56. Ratib, O., Phelps, M. E., Huang, S. C., Henze, E., Selin, C. E., & Schelbert, H. R. (1982). Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. Journal of Nuclear Medicine, 23(7), 577–586.

    PubMed  CAS  Google Scholar 

  57. Marshall, R. C., Huang, S. C., Nash, W. W., & Phelps, M. E. (1983). Assessment of the [18F]fluorodeoxyglucose kinetic model in calculations of myocardial glucose metabolism during ischemia. Journal of Nuclear Medicine, 24(11), 1060–1064.

    PubMed  CAS  Google Scholar 

  58. Brown, M. A., Myears, D. W., & Bergmann, S. R. (1988). Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. Journal of the American College of Cardiology, 12(4), 1054–1063.

    Article  PubMed  CAS  Google Scholar 

  59. Brown, M. A., Myears, D. W., & Bergmann, S. R. (1989). Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. Journal of Nuclear Medicine, 30(2), 187–193.

    PubMed  CAS  Google Scholar 

  60. Buck, A., Wolpers, H. G., Hutchins, G. D., et al. (1991). Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. Journal of Nuclear Medicine, 32(10), 1950–1957.

    PubMed  CAS  Google Scholar 

  61. Fox, K. A., Abendschein, D. R., Ambos, H. D., Sobel, B. E., & Bergmann, S. R. (1985). Efflux of metabolized and nonmetabolized fatty acid from canine myocardium Implications for quantifying myocardial metabolism tomographically. Circulation Research, 57(2), 232–243.

    PubMed  CAS  Google Scholar 

  62. Opie, L. H. (1976). Effects of regional ischemia on metabolism of glucose and fatty acids Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circulation Research, 38(5 Suppl 1), I52–74.

    PubMed  CAS  Google Scholar 

  63. Schwaiger, M., Schelbert, H. R., Ellison, D., et al. (1985). Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. Journal of the American College of Cardiology, 6(2), 336–347.

    Article  PubMed  CAS  Google Scholar 

  64. Sochor, H., Schwaiger, M., Schelbert, H. R., et al. (1987). Relationship between Tl-201, Tc-99m (Sn) pyrophosphate and F-18 2-deoxyglucose uptake in ischemically injured dog myocardium. American Heart Journal, 114(5), 1066–1077.

    Article  PubMed  CAS  Google Scholar 

  65. Wijns, W., Vatner, S. F., & Camici, P. G. (1998). Hibernating myocardium. The New England Journal of Medicine, 339(3), 173–181.

    Article  PubMed  CAS  Google Scholar 

  66. Tarakji, K. G., Brunken, R., McCarthy, P. M., et al. (2006). Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation, 113(2), 230–237.

    Article  PubMed  Google Scholar 

  67. Marshall, R. C., Tillisch, J. H., Phelps, M. E., et al. (1983). Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation, 67(4), 766–778.

    Article  PubMed  CAS  Google Scholar 

  68. Baer, F. M., Voth, E., Deutsch, H. J., et al. (1996). Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. Journal of the American College of Cardiology, 28(1), 60–69.

    Article  PubMed  CAS  Google Scholar 

  69. Carrel, T., Jenni, R., Haubold-Reuter, S., von Schulthess, G., Pasic, M., & Turina, M. (1992). Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. European Journal of Cardiothoracic Surgery, 6(9), 479–484.

    Article  PubMed  CAS  Google Scholar 

  70. Depre, C., Vanoverschelde, J. L., Gerber, B., Borgers, M., Melin, J. A., & Dion, R. (1997). Correlation of functional recovery with myocardial blood flow, glucose uptake, and morphologic features in patients with chronic left ventricular ischemic dysfunction undergoing coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery, 113(2), 371–378.

    Article  PubMed  CAS  Google Scholar 

  71. Di Carli, M. F., Davidson, M., Little, R., et al. (1994). Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. The American Journal of Cardiology, 73(8), 527–533.

    Article  PubMed  Google Scholar 

  72. Di Carli, M. F., Asgarzadie, F., Schelbert, H. R., et al. (1995). Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation, 92(12), 3436–3444.

    PubMed  Google Scholar 

  73. Eitzman, D., Al-Aouar, Z., Kanter, H. L., et al. (1992). Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. Journal of the American College of Cardiology, 20(3), 559–565.

    Article  PubMed  CAS  Google Scholar 

  74. Knuuti, M. J., Saraste, M., Nuutila, P., et al. (1994). Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. American Heart Journal, 127(4 Pt 1), 785–796.

    Article  PubMed  CAS  Google Scholar 

  75. Schinkel, A. F., Bax, J. J., Poldermans, D., Elhendy, A., Ferrari, R., & Rahimtoola, S. H. (2007). Hibernating myocardium: diagnosis and patient outcomes. Current Problems in Cardiology, 32(7), 375–410.

    Article  PubMed  Google Scholar 

  76. Gropler, R. J., Geltman, E. M., Sampathkumaran, K., et al. (1992). Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. Journal of the American College of Cardiology, 20(3), 569–577.

    Article  PubMed  CAS  Google Scholar 

  77. Gropler, R. J., Geltman, E. M., Sampathkumaran, K., et al. (1993). Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. Journal of the American College of Cardiology, 22(6), 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  78. Rubin, P. J., Lee, D. S., Davila-Roman, V. G., et al. (1996). Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction. The American Journal of Cardiology, 78(11), 1230–1235.

    Article  PubMed  CAS  Google Scholar 

  79. Higuchi, T., Bengel, F. M., Seidl, S., et al. (2008). Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovascular Research, 78(2), 395–403.

    Article  PubMed  CAS  Google Scholar 

  80. Paradis, P., Dali-Youcef, N., Paradis, F. W., Thibault, G., & Nemer, M. (2000). Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 931–936.

    Article  PubMed  CAS  Google Scholar 

  81. Harada, K., Sugaya, T., Murakami, K., Yazaki, Y., & Komuro, I. (1999). Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation, 100(20), 2093–2099.

    PubMed  CAS  Google Scholar 

  82. Higuchi, T., Fukushima, K., Xia, J., et al. (2010). Use of the AT1R ligand C-11 KR31173 for monitoring of the myocardial effect of drugs inhibiting the renin-angiotensin system after myocardial infarction. Journal of Nuclear Medicine, 51(Supplement 2), 268.

    Google Scholar 

  83. Breyholz, H. J., Wagner, S., Levkau, B., Schober, O., Schafers, M., & Kopka, K. (2007). A 18F-radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix-metalloproteinase activity in vivo. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 51(1), 24–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paco E. Bravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, P.E., Bengel, F.M. The Role of Cardiac PET in Translating Basic Science into the Clinical Arena. J. of Cardiovasc. Trans. Res. 4, 425–436 (2011). https://doi.org/10.1007/s12265-011-9285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9285-z

Keywords

Navigation