Skip to main content
Log in

Polycationic Nanoparticles: (1) Synthesis of a Polylysine-MION Conjugate and its Application in Labeling Fibroblasts

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Nanoparticles are increasingly used to label cells to track them by imaging or to quantify them in vivo. However, normal cellular uptake mechanisms are inadequate to load cells with tracking label. We propose a simple method to coat nanoparticles, such as monocrystalline iron oxide nanoparticle (MION), with the transfection agent polylysine in order to facilitate rapid, uniform, and heavy labeling of fibroblasts. The method is based on commercially available reagents, requires no more than 1 h of laboratory contact time, and can be accomplished safely without a chemical hood. A suspension of MION was treated by addition of solid sodium periodate to oxidize glucose residues of dextran and introduced aldehyde groups to the dextran coat surrounding MION’s crystalline magnetite core. After a 30-min incubation to effect oxidation, unreacted periodate was quenched with glycerol. The preparation was dialyzed to remove reactants and diluted to a final concentration of 2 mg Fe/ml. Poly-L-lysine was added to the oxidized MION (MION-A) to form reversible covalent Schiff base linkages. The resulting conjugate, a polylysine iron oxide nano-particle is abbreviated PLION. NIH3T3 fibroblasts labeled with either MION, MION-A, or MION plus polylysine showed minimal uptake of iron while cells labeled with PLION acquired a brown hue demonstrating strong labeling with iron. Microscopic assessment of iron labeling was confirmed using Prussian blue staining. In some cells, the concentration of iron was sufficiently high and localized to suggest association with cytoplasmic vacuoles. The nucleus of the cell was not labeled. Cell labeling increased when the ratio of polylysine to MION increased and with increasing amount of PLION.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MION:

monocrystalline iron oxide nanoparticle

MION-A:

oxidized MION containing aldehyde groups

MRI:

magnetic resonance imaging

PLION:

polylysine conjugated iron oxide nanoparticle

References

  1. Druet, E., Mahieu, P., Foidart, J. M., & Druet, P. (1982). Magnetic solid-phase enzyme immunoassay for the detection of anti-glomerular basement membrane antibodies. Journal of Immunological Methods, 48, 149–157.

    Article  PubMed  CAS  Google Scholar 

  2. Guesdon, J. L., Thiery, R., & Avrameas, S. (1978). Magnetic enzyme immunoassay for measuring human IgE. Journal of Allergy and Clinical Immunology, 61, 23–27.

    Article  PubMed  CAS  Google Scholar 

  3. Gu, H., Ho, P. L., Tsang, K. W., Yu, C. W., & Xu, B. (2003). Using biofunctional magnetic nanoparticles to capture gram-negative bacteria at an ultra-low concentration. Chemical Communications (Cambridge), 9, 1966–1967.

    Article  Google Scholar 

  4. Pazzagli, M., Kohen, F., Sufi, S., Masironi, B., & Cekan, S. Z. (1988). Immunometric assay for lutropin [hLH] based on the use of universal reagents for enzymatic labelling and magnetic separation and monitored by enhanced chemiluminescence. Journal of Immunological Methods, 114, 61–68.

    Article  PubMed  CAS  Google Scholar 

  5. Vonk, G. P., & Schram, J. L. (1991). Dual-enzyme cascade-magnetic separation immunoassay for respiratory syncytial virus. Journal of Immunological Methods, 137, 133–139.

    Article  PubMed  CAS  Google Scholar 

  6. Josephson, L., Perez, J., & Weissleder, R. (2001). Magnetic nanosensors for the detection of oligonucleotide sequences. Angewandte Chemie. International Edition, 40, 3204–3206.

    Article  CAS  Google Scholar 

  7. Patolsky, F., Weizmann, Y., Katz, E., & Willner, I. (2003). Magnetically amplified DNA assays [MADA]: sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. Angewandte Chemie. International Edition, 42, 2373–2376.

    Article  Google Scholar 

  8. Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 1884–1886.

    Article  PubMed  CAS  Google Scholar 

  9. Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18, 410–414.

    Article  PubMed  CAS  Google Scholar 

  10. Hafeli, U. O. (2004). Magnetically modulated therapeutic systems. International Journal of Pharmaceutics, 277, 19–24.

    Article  PubMed  CAS  Google Scholar 

  11. Xiang, J. J., Tang, J. Q., Zhu, S. G., Nie, X. M., Lu, H. B., Shen, S. R., et al. (2003). IONP-PLL: a novel non-viral vector for efficient gene delivery. Journal of Gene Medicine, 5, 803–817.

    Article  PubMed  CAS  Google Scholar 

  12. Jordan, A., Scholz, R., Maier-Hauff, K., Johannsen, M., Wust, P., Nadobny, J., et al. (2001). Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 225, 118–126.

    Article  CAS  Google Scholar 

  13. Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021.

    Article  PubMed  CAS  Google Scholar 

  14. Marchal, G., Van Hecke, P., Demaerel, P., Decrop, E., Kennis, C., Baert, A. L., et al. (1989). Detection of liver metastases with superparamagnetic iron oxide in 15 patients: results of MR imaging at 1.5 T. American Journal of Roentgenology, 152, 771–775.

    PubMed  CAS  Google Scholar 

  15. Sakai, D., Mochida, J., Iwashina, T., Hiyama, A., Omi, H., Imai, M., et al. (2006). Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials, 27, 335–345.

    Article  PubMed  CAS  Google Scholar 

  16. Tallheden, T., Nannmark, U., Lorentzon, M., Rakotonirainy, O., Soussi, B., Waagstein, F., et al. (2006). In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sciences, 79, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  17. Ye, Y., & Bogaert, J. (2008). Cell therapy in myocardial infarction: emphasis on the role of MRI. European Radiology, 18, 548–569.

    Article  PubMed  Google Scholar 

  18. Stella, B., Arpicco, S., Peracchia, M. T., Desmaele, D., Hoebeke, J., Renoir, M., et al. (2000). Design of folic acid-conjugated nanoparticles for drug targeting. Journal of Pharmaceutical Sciences, 89, 1452–1464.

    Article  PubMed  CAS  Google Scholar 

  19. Zimmer, C., Wright, S. C. Jr., Engelhardt, R. T., Johnson, G. A., Kramm, C., Breakefield, X. O., et al. (1997). Tumor cell endocytosis imaging facilitates delineation of the glioma-brain interface. Experimental Neurology, 143, 61–69.

    Article  PubMed  CAS  Google Scholar 

  20. Moore, A., Weissleder, R., & Bogdanov, A. Jr. (1997). Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. Journal of Magnetic Resonance Imaging, 7, 1140–1145.

    Article  PubMed  CAS  Google Scholar 

  21. Moore, A., Josephson, L., Bhorade, R. M., Basilion, J. P., & Weissleder, R. (2001). Human transferrin receptor gene as a marker gene for MR imaging. Radiology, 221, 244–250.

    Article  PubMed  CAS  Google Scholar 

  22. Babic, M., Horak, D., Trchova, M., Jendelova, P., Glogarova, K., Lesny, P., et al. (2008). Poly[L-lysine]-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chemistry, 19, 740–750.

    Article  PubMed  CAS  Google Scholar 

  23. Shinkai, M. (2002). Functional magnetic particles for medical application. Journal of Bioscience and Bioengineering, 94, 606–613.

    PubMed  CAS  Google Scholar 

  24. Zhang, Y., & Zhang, J. (2005). Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. Journal of Colloid and Interface Science, 283, 352–357.

    Article  PubMed  CAS  Google Scholar 

  25. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. Jr., & Brady, T. J. (1993). Monocrystalline iron oxide nanocompounds [MION]: physicochemical properties. Magnetic Resonance in Medicine, 29, 599–604.

    Article  PubMed  CAS  Google Scholar 

  26. Weissleder, R., Lee, A. S., Khaw, B. A., Shen, T., & Brady, T. J. (1992). Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology, 182, 381–385.

    PubMed  CAS  Google Scholar 

  27. Bogdanov, A. A. Jr., Martin, C., Weissleder, R., & Brady, T. J. (1994). Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. Biochimica et Biophysica Acta, 1193, 212–218.

    Article  PubMed  CAS  Google Scholar 

  28. (1974) Determination of iron concentraion: 2,2′-Bipyridyl photometric method. ISO 2992.

  29. Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K. S., Hornes, E., Ugelstad, J., et al. (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7, 43–54.

    PubMed  CAS  Google Scholar 

  30. Arbab, A. S., Bashaw, L. A., Miller, B. R., Jordan, E. K., Lewis, B. K., Kalish, H., et al. (2003). Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology, 229, 838–846.

    Article  PubMed  Google Scholar 

  31. Wunderbaldinger, P., Josephson, L., & Weissleder, R. (2002). Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjugate Chemistry, 13, 264–268.

    Article  PubMed  CAS  Google Scholar 

  32. Josephson, L., Tung, C. H., Moore, A., & Weissleder, R. (1999). High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry, 10, 186–191.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao, M., Kircher, M. F., Josephson, L., & Weissleder, R. (2002). Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjugate Chemistry, 13, 840–844.

    Article  PubMed  CAS  Google Scholar 

  34. Stanic, V., Arntz, Y., Richard, D., Affolter, C., Nguyen, I., Crucifix, C., et al. (2008). Filamentous condensation of DNA induced by pegylated poly-L-lysine and transfection efficiency. Biomacromolecules, 9, 2048–2055.

    Article  PubMed  CAS  Google Scholar 

  35. Abbasi, M., Uludag, H., Incani, V., Hsu, C. Y., & Jeffery, A. (2008). Further investigation of lipid-substituted poly[L-Lysine] polymers for transfection of human skin fibroblasts. Biomacromolecules, 9, 1618–1630.

    Article  PubMed  CAS  Google Scholar 

  36. Yu, H., Chen, X., Lu, T., Sun, J., Tian, H., Hu, J., et al. (2007). Poly[L-lysine]-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. Biomacromolecules, 8, 1425–1435.

    Article  PubMed  CAS  Google Scholar 

  37. Montet-Abou, K., Montet, X., Weissleder, R., & Josephson, L. (2007). Cell internalization of magnetic nanoparticles using transfection agents. Molecular Imaging, 6, 1–9.

    PubMed  CAS  Google Scholar 

  38. Wang, Y. X., Hussain, S. M., & Krestin, G. P. (2001). Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European Radiology, 11, 2319–2331.

    Article  PubMed  CAS  Google Scholar 

  39. Montet-Abou, K., Montet, X., Weissleder, R., & Josephson, L. (2005). Transfection agent induced nanoparticle cell loading. Molecular Imaging, 4, 165–171.

    PubMed  Google Scholar 

  40. Briley-Saebo, K. C., Mani, V., Hyafil, F., Cornily, J. C., & Fayad, Z. A. (2008). Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magnetic Resonance in Medicine, 59, 721–730.

    Article  PubMed  Google Scholar 

  41. Dormer, K., Seeney, C., Lewelling, K., Lian, G., Gibson, D., & Johnson, M. (2005). Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. Biomaterials, 26, 2061–2072.

    Article  PubMed  Google Scholar 

  42. Steinman, R., Silver, J., & Cohn, Z. (1974). Pinocytosis in fibroblasts. Journal of Cell Biology, 63, 949–969.

    Article  PubMed  CAS  Google Scholar 

  43. Groman, E. V., Bouchard, J. C., Reinhardt, C. P., & Vaccaro, D. E. (2007). Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconjugate Chemistry, 18, 1763–1771.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ian Herzberg of Brookhaven Instrument Company for helpful discussions regarding zeta potential measurements and acknowledge partial support from NIH SBIR grant number AI063731.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest V. Groman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groman, E.V., Yang, M., Reinhardt, C.P. et al. Polycationic Nanoparticles: (1) Synthesis of a Polylysine-MION Conjugate and its Application in Labeling Fibroblasts. J. of Cardiovasc. Trans. Res. 2, 30–38 (2009). https://doi.org/10.1007/s12265-008-9082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-008-9082-5

Keywords

Navigation