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Abstract Alzheimer’s disease (AD) is characterized by

decreased neuronal activity and atrophy, while hyperactiv-

ity of neurons seems to make them resistant to aging and

neurodegeneration, a phenomenon which we have para-

phrased as ‘use it or lose it’. Our hypothesis proposes that

(1) during their functioning, neurons are damaged; (2)

accumulation of damage that is not repaired is the basis of

aging; (3) the vulnerability to AD is determined by the

genetic background and the balance between the amount of

damage and the efficiency of repair, and (4) by stimulating

the brain, repair mechanisms are stimulated and cognitive

reserve is increased, resulting in a decreased rate of aging

and risk for AD. Environmental stimulating factors such as

bilingualism/multilingualism, education, occupation, musi-

cal experience, physical exercise, and leisure activities

have been reported to reduce the risk of dementia and

decrease the rate of cognitive decline, although method-

ological problems are present.
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Introduction

Dementia and other brain disorders are by far the leading

contributors to dependence. Worldwide, * 50 million

people live with dementia, a figure that is thought to rise to

132 million by 2050 [1]. Alzheimer’s disease (AD) is the

most prevalent cause of dementia in the elderly. AD

neuropathology is characterized by the presence of plaques

containing amyloid beta (Ab) and tangles consisting of

hyperphosphorylated tau [2]. Based on the age of onset,

AD can be divided into two subtypes: early-onset AD

(EOAD), which starts before 65 years of age and repre-

sents only about 1% of all AD cases, and a late-onset type

(LOAD), which begins after 65 years of age and represents

99% of all AD cases [3]. The contribution of the genetic

component is much stronger for EOAD than for LOAD.

Mutations in three different genes are well known to cause

rare cases of EOAD in an autosomal dominant way: APP,

PSEN1, and PSEN2. APOEe4 is the most prevalent gene

that increases risk in both EOAD and LOAD (reviewed in

[4]). Genome-wide association studies have reported some

20 additional genetic risk loci for LOAD (reviewed in [5]).

AD is generally based upon interactions between genetic

and environmental factors. Environmental factors such as

bilingualism/multilingualism, education, occupation, musi-

cal experience, physical exercise, and leisure activities

have been reported to be associated with a postponement of

AD, but definitive proof of such effects is lacking.

Our working hypothesis (Fig. 1) is that neurons sustain

damage during their functioning, but that they have

systems that efficiently repair most of this damage. The

lifetime accumulation of damage that is not repaired is the

basis for aging, and this is the main risk factor for AD. The

balance between the amount of damage and the efficiency

of repair determines the vulnerability to AD. Both extra
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damage due to environmental factors and deficient repair

due to polymorphisms may result in an earlier onset of AD.

In contrast, by stimulating the brain, the interaction

between genetic and environment changes in such a way

that cognitive reserve and/or the repair mechanism are

increased, and so the rate of aging and the risk for AD are

decreased. Indeed, decreased neuronal activity is an

essential characteristic of AD, while increased neuronal

activity seems to postpone AD changes, findings that have

been paraphrased as ‘use it or lose it’ [6]. Interestingly, as

was shown recently in the brains of hibernating animals,

hypometabolism can trigger the hyperphosphorylation of

tau [7]. Moreover, a larger brain size, suggesting increased

brain reserve, goes together with a later age of onset of AD

[8]. In a study of nuns 75–95 years of age, it was found that

those who made more complex sentences in their letters at

age 22 and thus had better functioning brains, were better

protected against AD [9]. Recent epidemiological studies

have shown that factors like bilingualism/multilingualism,

education, occupation, musical experience, physical exer-

cise, and leisure activities, correlate with a slower rate of

memory decline during aging, a delayed onset of mild

cognitive impairment (MCI), and/or a lower incidence of

dementia. It is clear that the risk for AD is influenced by an

interaction between genes and environment, while age is

the major risk factor. Our hypothesis is that stimulation of

brain function may favorably affect the interaction between

genes and environment, increase repair and cognitive

reserve, and thus slow brain aging and postpone AD.

Arguments for this idea are presented in this review.

Cognitive Reserve and Neuronal Activation

Various reports indicate that extra brain reserve postpones

AD. A larger premorbid brain size is correlated with a later

start of AD [8]. Furthermore, IQ is positively correlated

with premorbid brain size and negatively with brain

atrophy in AD patients, where the disease presents with

mild to moderate severity [10]. In contrast is a smaller

brain size related to an earlier onset, a more rapid

progression, and longer disease progression of AD [11].

A clear example of small brain size is Down syndrome

(DS) [12], which is accompanied by a shorter life

expectancy [13] and early cognitive decline [14]. All DS

patients show AD-related neuropathology by age 40 [15],

and develop dementia at a mean age of 55.5 years [14].

Also, the APOEe4 allele is more frequent in DS individuals

than in controls [16]. In contrast, the APOEe2 allele has a

protective effect against AD in adults with DS [17].

Neuronal activity is consistently decreased in AD. A

positron emission tomography (PET) study showed a

regional impairment of cerebral glucose metabolism in

AD, especially in the temporal and parietal lobes [18].

Another PET study extended this finding by showing that

APOEe4 carriers have a more pronounced decline of

metabolism in AD [19]. In addition, a significant negative

relationship has been found between brain metabolism as

measured by PET and plaque density in AD [20], as well as

with the phosphorylated tau protein levels in the cere-

brospinal fluid (CSF) in AD [21].

A decrease of cerebral glucose metabolism may precede

cognitive impairment in patients with genetic risk factors.

Reiman et al. [22] found that late middle-aged cognitively

normal subjects who were homozygous for the APOEe4
allele already had reduced glucose metabolism in those

brain areas that were later affected by AD, in accord with

Herholz’s study [18]. Besides, pathological changes (i.e.

Ab) are associated with hypometabolism in cognitively

normal controls before atrophy occurs [23].

Interestingly, increased activity has been reported in

early/preclinical stages of AD in various brain areas.

Higher metabolism has been found in the nucleus basalis of

Meynert in MCI patients than in controls and late-stage AD

patients [24]. Higher basal forebrain metabolism has also

been found in MCI patients (Ab positive or negative),

while lower in patients with further cognitive decline [25].

In addition, cortical hypermetabolism has been reported in

mostly Ab-negative MCI patients [26]. Hypermetabolism

in the hippocampus has been found in Ab-positive MCI

Fig. 1 Neurons are damaged by functioning, aging, trauma, and

pathological changes like amyloid beta and hyperphosphorylated tau,

and are more vulnerable due to some genetic factors, such as

APOEe4. However, they have systems that efficiently repair most of

the damage. Repair is stimulated by activating the brain. The balance

between the amount of damage and the efficiency of repair determines

the risk for Alzheimer’s disease (AD). By stimulating the brain with

environmental factors such as bilingualism/ multilingualism, educa-

tion, occupation, musical experience, physical exercise, and leisure

activities, repair mechanisms are thought to be stimulated and

cognitive reserve is increased, resulting in postponing AD.
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patients [27]. Our micro-array study also showed neuronal

hyperactivity in the prefrontal cortex in preclinical AD

patients, as demonstrated by increased expression of a large

number of genes [28, 29]. The hypermetabolism in some

cognition-related areas in MCI patients suggests that the

brain acts against the first functional impairments at the

incipient stages of dementia. We are currently investigating

a transcription factor (early growth response 1, Egr1) and

microRNA-132 that may be responsible for the hyperac-

tivity in the early stages of AD [30]. Indeed, in an AD

mouse model, deficiency of this microRNA increases Ab
deposition and tau expression, phosphorylation, and

aggregation [31–34].

There is also an increasing amount of literature indicat-

ing that metabolically very active neurons are less vulner-

able to aging and AD, a phenomenon that we have

paraphrased ‘use it or lose it’ [6, 35]. We have found

various examples of such a relationship in the hypothala-

mus. Increased plasma vasopressin (AVP) levels are found

in elderly subjects [36]. During aging, AVP neurons are

activated in the supraoptic nucleus in women [37, 38], and

these neurons remain intact in AD [39, 40]. The corti-

cotropin-releasing hormone neurons in the hypothalamic

paraventricular nucleus are activated during aging in males

and even more activated in AD (reviewed in [41]).

In contrast, a marked reduction in the number of AVP-

expressing neurons and in the amount of AVP-mRNA was

found in the suprachiasmatic nucleus (SCN) in aging, and

even more so in AD. The SCN is the master biological

clock, which regulates all circadian rhythms. In old rats,

the diminished circadian sleep-wake amplitude can be

restored by increasing the intensity of environmental light.

In addition, the increased light input counteracts the age-

related decrease in the number of AVP-expressing neurons

in the SCN [42, 43]. In humans, we found by actigraphy

that additional bright light improves the day-night rhythm

in patients with intact vision, but not in patients with

compromised sight [44]. We also found that the age-related

decrease in melatonin secretion during the night, which is

under the control of the SCN, is partly due to poor

illumination as experienced by many elderly people, and

can be restored using bright light [45]. Light is not a

therapy for AD but rather a therapy for SCN function.

However, it shows an important principle, i.e. that it is

possible to re-activate neurons that are functionally

affected in AD.

Early in the process of AD a phase of spontaneous

activation has been found in different brain areas. Increased

metabolic activity has been reported in the nucleus basalis

of Meynert using the size of the Golgi apparatus as a

measure of metabolic activity [24]. This spontaneous

activation occurs in the phase of MCI, i.e. Braak stages

III and IV, a result that confirmed later by in vivo PET [25].

In addition, we found activation of the expression of 865

genes in the prefrontal cortex in early, preclinical, AD (i.e.

between Braak stages II and III), just before the accumu-

lation of plaques and tangles. These activated genes are

involved in synaptic activity, plasticity, and energy

metabolism [28]. These studies suggest that a phase of

spontaneous early activation occurs during the preclinical/

early stages of AD that may temporarily compensate for

the neuropathological changes and that seems to prevent

cognitive impairment for some time.

Various in vitro studies have shown that neuronal

activity can protect against cell death. One study showed

that neural activation protects hypothalamic magnocellular

neurons against functional axotomy-induced programmed

cell death by the sodium channel blocker tetrodotoxin

(TTX), both in vivo and in vitro [46]. Another study [47]

found that prolonged suppression of spontaneous activity

using TTX causes the death of cortical neurons in primary

cell cultures, which may be mediated by Tissue-Type

Plasminogen Activator [48]. Although these experiments

are presumed to lead to a better understanding of slow

neuronal death in neurodegenerative diseases, they are not

directly AD-related. Recently, Akwa et al. found that

synaptic activity protects against AD and frontotemporal

dementia (FTD)-like tau-pathology by autophagic lysoso-

mal degradation [49], indicating that neuronal activity may

diminish AD pathology.

Only a few studies have shown that genetic factors

affect the response of neuronal activity to environmental

stimulation. One study indicated that the degree of

cognitive improvement by combination training depends

on dopamine-related genotypes: DRD3 Ser9Gly and

COMT Val158Met polymorphism carriers benefit most

from exposure to such training [50]. In addition, genes

affect neuronal activity. It has been shown that nerve

growth factor gene therapy triggers the activation of

neuronal responses, i.e. axonal sprouting, cell hypertrophy,

and activation of functional markers in AD patients [51].

Environmental Stimulation of Cognitive Reserve

Bilingualism and Multilingualism as a Stimulus

for Cognitive Reserve

Several retrospective studies present evidence that bilin-

gualism delays the onset of dementia by * 4 years.

Bialystok et al. first reported that bilingual patients with

cognitive complaints show symptoms of dementia 4 years

later than monolingual people, without a change in the rate

of progression [52]. Later retrospective studies carefully

controlled for multiple confounding variables (education,

gender, cognitive and occupational levels, and immigration
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status) also reported positive effects of bilingualism

[53, 54]. Wilson et al. reported that a higher level of

mastery of a foreign language is associated with a reduced

risk of MCI [55]. However, the idea that bilingualism

reduces the risk of dementia is still controversial, since

other studies have not supported such a protective effect of

bilingualism on age-related cognitive decline, nor on

developing dementia [56–58] or a delay of onset of

dementia [59–61]. However, the definition of bilingualism

and the design and statistical structure of the studies varied

[56, 59, 60]. Thus, well-controlled prospective studies are

still lacking. Support comes, however, from the study of

Klein et al. [62], who found a decline in the incidence of

AD with an increase in population multilingualism, even

after controlling for wealth and literacy. The overall picture

still favors the conclusion that bilingualism protects against

the symptoms of dementia.

Recent data seem to show an even stronger protective

effect on cognition by multilingualism than bilingualism.

In a retrospective nested case-control study consisting of

participants with cognitive impairment without dementia

and normal controls aged 65 and over, multilinguals

presented a lower risk of cognitive impairment without

dementia than bilinguals, after adjustment for education

and age [63]. In another study [64], in which the study

group consisted of immigrants and non-immigrants in

Canada, it was found that multilingualism but not bilin-

gualism in the overall group showed a delay of the age at

diagnosis or age at onset of symptoms of almost 5 years, in

agreement with the study of Bialystok et al. [52]. In a study

of patients with dementia, Alladi et al. confirmed that

bilingual patients develop dementia 4.5 years later than

monolingual patients, while no additional benefit of

speaking more than 2 languages was found [54]. It is thus

at present not clear under what circumstances multilin-

gualism provides more protection than bilingualism against

the decline of cognition in AD. In addition, it is not yet

known whether learning a second language later in

childhood or even in adulthood without becoming bilin-

gual, also results in extra cognitive reserve.

Bilingualism/multilingualism in relation to cognitive

decline has also been studied with imaging techniques. A

computed tomography study showed that bilingual patients

with AD have more brain atrophy than monolingual

patients [65]. Another study reported that multilingual

MCI and AD patients have a thicker cortex than monolin-

guals [66]. Besides, bilingualism protects the brain against

pathological changes. Early bilingualism is associated with

lower CSF-tau [67]. The data indicate that bilingualism

enhances cognitive reserve and enables bilinguals to

function at a higher level than would be predicted from

the level of the disease. So far, no systematic study of the

association between bilingualism or multilingualism and

the AD-related genetic background has been done.

Education and Cognitive Reserve

The risk of developing clinical cognitive AD changes has

been found to be reduced in participants with higher

education in most cohort studies [68–70], but not all

[71, 72]. Some found that the association between educa-

tion and AD is gender dependent [73], while various others

found that the education effect is mainly present in the

lowest education group [74–76].

Moreover, the role of education in predicting the clinical

course of AD is not clear. On the one hand, a recent

longitudinal cohort study based on a large data set of

autopsy patients with confirmed AD demonstrated that a

higher level of education is associated with a lower Clinical

Dementia Rating Scale [77]. Some prospective studies

found a significantly steeper rate of decline over time in

cognitive performance among those with more education

[78–80]. Patients with a higher education show a faster

disease progression not only in LOAD, but also in EOAD

[81]. The idea is that when AD clinically manifests in

better-educated patients, the brain pathology is already

quite advanced due to the greater brain reserve. This has

indeed been confirmed in some imaging studies [82–84]. In

contrast, one study of 482 patients with possible or

probable AD, found a significantly slower rate of cognitive

decline among those with more education [85].

Opinions differ when it comes to the association

between the typical neuropathological changes in AD and

education. While education has been reported to reduce the

risk of dementia associated with a lower amyloid load [86],

bigger head circumference [87], fewer neuritic plaques

[88, 89], and a lower Braak stage [88], there are conflicting

reports on an educational effect on brain atrophy [90], and

on diffuse plaques [89] and tangles [86, 89, 91]. Moreover,

education diminishes the cognitive consequences of severe

but not of mild white matter pathology [92], while the

opposite pattern occurs for tangles and neuritic plaques

[88, 89, 91]. In addition, education is negatively associated

with plasma tau levels in MCI and early AD [93].

One study has shown that education cancels out the

genetic liability of APOEe4 for cognitive decline, probably

by enhanced reserve [94]. This is in accord with a study

that was based on pooled data from three major population-

based studies [95]. Higher education protects the brain

from neuropathological AD changes in genetically risky

subjects as well. A higher education is associated with

lower amyloid in APOEe4 carriers [96]. It should be noted,

though, that the level of education is dependent on IQ and

social factors and is confounded by self-selection, while for
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obvious reasons randomized lifelong controlled trials

cannot be performed on this topic.

Occupation and Cognitive Reserve

A population-based twin study suggested that greater

complexity of work, especially with people, may reduce

the risk of AD [97]. In addition, some cross-sectional

studies associate the risk of developing dementia with

lower occupational achievement [98–100], but this is not

the case for all studies [101–103]. The differences may be

caused by the interaction between the level of education

and the risk of dementia [104]. Recurrent novelty at work

seems to be a major stimulus for the brain [105]. Less

complicated work such as manual labor is associated with

earlier development of AD [106, 107] and complicated,

intellectual work is associated with a reduced risk of AD

[108]. Besides, occupational exposure to deleterious envi-

ronments and substances such as metals, chlorinated

solvents, and extremely low frequency magnetic fields

increases the risk of AD [109].

Occupational complexity is correlated with better cog-

nitive performance. However, the protection that occupa-

tion offers in terms of cognitive ability seems to disappear

after retirement. Results from the Australian Longitudinal

Study of Ageing showed that higher complexity of

occupation is associated with greater speed, better memory,

and better mental status at baseline in older individuals, but

there are no associations of occupational complexity with

rates of cognitive decline over time [110]. Finkels et al.

even reported that a previously high level of complexity of

a job that involves working with people is associated with a

faster decline after retirement [111], in accord with the

results of the Glostrup 1914 Cohort [112]. A recent study

showed that high occupational attainment in individuals

with MCI is an independent risk factor for a higher

progression rate of MCI to AD, suggesting that the

protective effect of high occupational attainment against

cognitive decline disappears in the MCI stage [113]. Also,

a later retirement age is associated with a later age at

diagnosis of AD [114]. These studies illustrate that the

cognitive protection brought about by occupation may need

consistent occupation. The protective effect of occupation

complexity led researchers to the hypothesis that occupa-

tional therapy might be helpful for AD patients. Multiple

studies have indeed shown that occupational therapy delays

the functional decline in AD patients (reviewed in [115]).

Measurements of hippocampal volume and brain atro-

phy suggest that occupational complexity enhances the

cognitive reserve and reduces the adverse effects of

neuropathology on cognition [116]. Occupation may pro-

tect cognition in APOEe4 carriers as well. The onset of

cognitive impairment in carriers with high lifetime

intellectual enrichment occurs * 8.7 years later than in

carriers with low intellectual enrichment [117]. However,

no significant difference was found between APOEe4-

carriers and non-carriers in terms of the effect of occupa-

tion in another study [118]. Again, self-selection confounds

studies on occupation. The effect of occupation on APOEe4
carriers is thus far from settled. So far, there appears to be

no systematic study about the association between occu-

pation and AD-related pathological changes.

Musical Experience and Cognitive Reserve

Musical experience has the capacity to engage auditory,

cognitive, motor, and emotional functions and remains

relatively preserved with aging. Elderly people who

underwent long-term musical training earlier in life do

better in a wide range of auditory processing tasks

[119–121]. They also show faster performance and timing

in language tasks [122], enhanced auditory attention [123],

music-related motor abilities [124], and executive func-

tions [125]. Moreover, music training in early life seems to

have a beneficial effect that continues into late adulthood

[126, 127]. Musical training in elderly people seems to be

beneficial for cognition as well. Piano lessons for older

adults result in enhanced cognitive flexibility, general

processing speed, and working memory [128], as well as

executive functions, attention, visual scanning, and motor

ability [129]. It should be noted, however, that these

conclusions are not based upon formal randomized well-

controlled tests. It can, therefore, not be excluded that those

persons who have chosen voluntarily to follow a musical

training are different from non-musicians by self-selection.

Playing a musical instrument by elderly of 75 years of

age reduced the risk of developing dementia in a 5-year

follow-up [130]. Another study showed that music lessons

in childhood and adolescence are associated in old age with

a lower risk of developing MCI, but not with a slower rate

of cognitive decline [55].

Possibly because of the relative neuropathological

preservation of medial frontal and limbic areas in AD

[131], music-induced emotions and memories are pre-

served even in the more advanced stages of AD [132, 133].

This enables the application of music therapy in all stages

of dementia. Stimulating background music has been

reported to temporarily enhance awareness [134], episodic

memory [135–137], and verbal fluency [138]. The ‘‘Index

music’’ method, in which the subjects have to describe a

memory of their choice related to the music presented to

them, has been found to increase the autobiographical

memory quality scores of AD patients [139]. Both singing

and listening to music may help to maintain general

cognition and executive function and alleviate depression

[140]. Singing is more effective than listening to music or
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standard care for patients for enhancing working memory

and episodic memory, especially in patients with mild

dementia, and for reducing the psychological stress and

burden experienced by caregivers [141]. In addition,

singing in a choir improves cognition and visuospatial

processing in AD patients [142] and 6-months of karaoke-

singing improves psychomotor speed and mood in AD

patients [143]. However, another study reported a lack of

improvement of verbal memory after 12 weeks of singing

in AD patients [144]. Moreover, playing a musical

instrument enhances cognition as measured by the Mini-

Mental State Examination scores in MCI patients [145]. So

far, however, there is no study trying to explain the

differences in observations on the basis of associations

between musical experience and genetic background.

Physical Activity and Cognitive Reserve

A large number of studies have consistently shown a

relationship between more physical activity and a reduced

risk of dementia. A review which analyzed 20 longitudinal

epidemiological studies suggested a significant and inde-

pendent preventive effect of physical activity on cognitive

decline or dementia, after adjustment for various con-

founders [146]. In a meta-analysis of 16 prospective

epidemiological studies, people engaged in a baseline level

of physical activity had a 28% lower risk of developing any

type of dementia and a 45% lower risk of developing AD,

even after controlling for confounding variables [147].

Leisure-time physical activity clearly reduces the risk of

AD. However, the risk reduction is less clear for types of

physical activity related to occupation and commuting. The

only study separating occupational from commuting activ-

ities, and distinguishing them from leisure-time activities,

did not find a relationship with AD risk [148], suggesting

that work-related physical activity is not enough to protect

against AD.

It has been suggested that physical activities at any time

in life protect against cognitive impairment [149], while

early/mid-life physical activity confers stronger protection

than late-life exercise. Mid-life physical activity appears to

protect against dementia late in life [150]. A population-

based case-control study [151] shows that those who take

moderate exercise during mid-life have a lower risk for

MCI than those who take it late in life. While teenage

physical activity is most strongly associated with lower

odds of late-life cognitive impairment among all four

stages of life [149], it seems that earlier physical activity

has a stronger protective effect on cognitive impairment.

However, it is never too late to increase physical activity

for cognitive protection.

The intensity of physical activity is also a factor in the

protection against cognitive impairment. A recent

prospective cohort study derived from the a population-

based study [152] found that physical activity at a moderate

intensity in mid-life among MCI participants decreases the

risk of dementia. In a meta-analysis based on 15 prospec-

tive studies, Sofi et al. [153] reported a consistent

protection by all levels of physical activity against

cognitive decline, with stronger protection in the high-

level exercise group than individuals in the low-to-mod-

erate level exercise group. A large cohort study was carried

out in individuals of 65 years or older and showed after

5 years that higher levels of physical activity are associated

with a reduced risk of cognitive impairment, AD, and other

dementias [154]. A recent study quantified the intensity of

physical activity and showed that physical activity over a

specific range (0–2000 kcal/week or 0–45 metabolic

equivalent of task h/week) is associated with a risk of

AD in an inverse linear dose–response manner, such that an

increase in physical activity by 10 metabolic equivalent of

task h/week or 500 kcal/week is associated with a

* 13% decrease in the risk for AD [155]. Physical activity

has been found to protect against cognitive decline, while

the protection level differs for different types of physical

exercise. Many programs, including physical exercise,

have been carried out for aged adults to protect them from

cognitive decline. One program explored the effects of an

‘‘everyday’’ activity. The participants tended to show

improvements in executive function and memory relative

to matched controls (P\ 0.10), with impaired baseline

executive function showing the greatest improvement

compared to non-impaired controls [156]. In addition, a

combination of fun-recreational activities as well as

cognitive, aerobic, and sensory stimuli counteract aging-

related cognitive decline [50]. However, a meta-analysis on

walking for non-demented sedentary elderly revealed that

walking improves set-shifting (task-switching) and inhibi-

tion (Stroop Color and Word Test) without improving

cognitive impairment. Specifically, no improvements were

found in executive functioning [157].

Even though it seems that physical activity may have a

protective effect on cognition in non-affected elderly, the

role of physical activity for individuals already experienc-

ing cognitive impairment is less clear. One may wonder, of

course, whether physical activity is able to reverse the

pathophysiological process of dementia during the latest

stages of the disease. A recent meta-analysis suggested that

physical exercise, aerobic exercise in particular, benefits

global cognition in MCI patients [158]. This is in

accordance with an earlier meta-analysis of 30 trials with

2,020 participants [159], which reported beneficial effects

of physical activity on physical fitness and cognitive

function in adults with cognitive impairment (MCI and

dementia), while the mean time required to achieve these

results was in most cases \ 4 months. As reviewed by
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Rolland et al. [146], physical activity brings about

significant improvements in AD patients in psychological

and/or physical performance, mobility, balance, strength,

gait speed, sleep, agitation, mood, and cognitive function.

Another meta-analysis of 16 trials with 937 participants

provided evidence that exercise programs significantly

improve the ability to perform activities of daily life and

possibly also improve cognition in people with dementia,

although some caution was advised in interpreting these

findings [160]. This result is in accord with a meta-analysis

which focused on cognitive-physical interventions [161].

However, there are also studies that showed no effects of

physical activity on cognition in a cognitively-impaired

population [162], except for depression [163]. Although

this field is in its infancy, it appears that physical activity is

a feasible way to postpone, and to a lesser degree treat

cognitive decline, even in the presence of AD. Continued

research on strength, consistency, and the dose-response

relationship is needed to safely disseminate physical

activity as a treatment for cognitive impairment. In

particular, more prospective research, including the genetic

background of patients, is needed to evaluate the thera-

peutic effect of physical exercise in older adults with AD.

When it comes to the association between physical

activity and the APOE genotype, few studies have been

performed. One study found that moderate and low levels

of midlife leisure-time physical activity were associated

with a higher risk of dementia, while high levels of such

activity were related to a lower risk of dementia. More

benefits of midlife leisure time physical activity have been

shown in APOEe4 non-carriers [164]. This conclusion is

the opposite of that of another study, which suggested

stronger protective effects of physical activity on the risk of

dementia in APOEe4 carriers than in non-carriers [165]. A

third study has demonstrated that carriers of dopamine-

related genotypes, like the DRD3 Ser9Gly and COMT

Val158Met polymorphisms, have the greatest benefits from

exposure to combination training of sensory stimuli and

fun-recreational activities [166]. So it is not yet clear how

gene-environmental interactions influence the effect of

physical activity on cognition and dementia.

The association between physical activity and the AD

pathological (Ab/tau) burden has been the topic of a few

cross-sectional studies. When measured in vivo either by

PET or by CSF analysis [167], a negative association

between physical activity level and Ab load has been found

in cognitively intact elderly. A similar relationship was

found between physical activity and CSF tau in another

study, which disappeared, however, after controlling for

cardiovascular risk factors, APOEe4 status, and depressive

symptoms [168]. In healthy late-middle-aged adults,

engagement in moderate physical activity is associated

with higher CSF Ab42, lower total tau/Ab42, and lower

phosphorylated tau/Ab42. In contrast, neither light nor

vigorous physical activity is associated with any of the

biomarkers [169]. In addition, a relationship was found

between high levels of physical activity and reduced

amyloid as determined by PET in vivo in APOEe4-positive

individuals [170]. However, such a relationship is difficult

to interpret because the brain changes may cause dimin-

ished physical activity. Without well-controlled, random-

ized longitudinal studies, it is difficult to judge what is

cause or effect, especially in at-risk individuals.

Leisure Activity and Cognitive Reserve

Various studies have reported effects of leisure activity on

the risk of cognitive decline/impairment and on the risk for

AD (for reviews see [171] and [172]). The results from

these studies are, however, inconsistent. Some studies

reported a protective effect of social activities on the risk of

cognitive decline/impairment [173–175], while others did

not find a significant effect [175–177]. However, a recent

meta-analysis showed significant associations between

cognitive leisure activities and diminished risk of cognitive

impairment and dementia [178]. Prospective studies have

shown a protective role of leisure activity against dementia

as well. A recent study, which examined a sample of 1,475

elderly (C 65 years) who were dementia-free at baseline,

over a follow-up period of up to 15 years, revealed that

higher levels of ‘‘Total activity’’ and ‘‘Social activity’’ are

associated with a decreased risk of dementia [179], in

accord with a prospective study of Swedish twins [180], as

well as with another 20-year cohort study [181]. Some

studies have reported not only that life-long leisure activity

has a protective effect, but also that late-life leisure activity

reduces the risk of dementia [130, 182, 183]. One

longitudinal study showed that stimulating activity, either

mentally- or socially-oriented, may protect against demen-

tia [184]. This is in accord with a recent longitudinal study

which showed that late-life leisure activities protect against

cognitive impairment among elderly Chinese, while the

protective effect is more profound for educated elderly

[185]. Another study found significant differences in the

level of social activity at baseline between those with

stable MCI and those who had progressed to dementia,

indicating that social activity affects the further prognosis

in MCI in a positive way [186]. However, two other studies

did not find a significant protective effect of late-life social

support activities [187] or of midlife social engagement

[188] on the risk of dementia. The overall image is that

leisure activity, during one’s whole life or just in late life,

seems to be accompanied by a reduced risk of dementia.

The effect of leisure activities on cognitive function

appears to be domain-specific. One study reported that

participation in political activities is related to better
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cognition. This appears, however, not to be the case for

social-cultural or organizational activities [189]. Another

study reported that reading, watching TV and listening to

radio, may diminish the decline in perceptual speed, but not

in verbal fluency or performance, whereas no effect was

found of social or religious activities on any of the

cognitive domains [176]. Leisure activities that have

demonstrated pro-cognitive effects include reading, dis-

cussion groups, computer usage, participation in card and

board games, solving puzzles, playing musical instruments,

and learning a second language. Social activities that have

demonstrated pro-cognitive effects include traveling, going

to the theater, concerts or art events, participating in social

groups, socializing with family, and dancing [190].

The potential impact of leisure activity/cognitive train-

ing in late life in older adults has been a topic of increasing

interest. A meta-analysis of 7 randomized clinical trials

(RCTs) in healthy older adults showed that interventions

with cognitive exercise have an average effect size of 0.6

on neuropsychological performance, which is consistent

with the findings from observational studies [191]. The

effect size for RCTs does not depend on the duration of the

follow-up. However, the quality of reports is generally low.

The overall findings indicate that multi-domain cognitive

training has the potential to improve cognitive function in

healthy elderly and slow down the decline in affected

individuals [192]. The effect of mental activity/cognitive

training is preserved in cognitively impaired elderly

according to a cross-sectional study [193].

However, few RCTs have focused on the effects of

social and other types of activity on improving cognitive

function in cognitively impaired individuals, since they are

difficult to perform. Moreover, it would be unrealistic to do

an RCT for every single activity. The reported RCTs found

just focused on one leisure activity. It has been reported

that Mahjong [194–196], Taichi [194, 197], or video games

requiring physical activity [198] can preserve functioning

or delay the decline in certain cognitive domains, even in

people with significant cognitive impairment. Such cogni-

tive activities may thus be effective non-drug treatments

for cognitively impaired patients.

The relationship between cognitive leisure activities and

neuropathological markers of AD is still controversial. One

study of 186 elderly did not find any correlation between

cognitive activity and a number of biomarkers such as

in vivo amyloid load, glucose metabolism, and hippocam-

pal volume [199], while another study of 118 elderly found

that lifetime cognitive activity was associated with in vivo

amyloid load in APOEe4 carriers [200]. The interaction

between leisure physical activity and APOEe4 in dementia

has been studied, more but so far remains controversial

[201, 202]. Podewils et al. found that leisure physical

activity is negatively associated with risk of dementia and

the association is more marked in APOEe4 non-carriers,

but is absent in carriers [201]. In contrast, Rovio et al.

reported a more pronounced association in APOEe4
carriers [202]. It should also be noted, though, that

improving cognition in a trial does not necessarily mean

that this procedure will postpone AD.

Conclusions

The interaction between genetic background and environ-

mental factors plays an important role in the risk for AD.

As discussed, environmental factors such as bilingualism

and multilingualism, education, occupation, playing music,

physical exercise, and leisure activities are associated with

a negative risk for AD (Fig. 1). However, their causal role

in postponing AD is extremely difficult or even impossible

to establish in randomized controlled trials.

More studies are needed on the effect of the genetic

background of individuals who are exposed to environ-

mental stimulation. The recent ‘spontaneous’ decrease in

the prevalence of AD [203] must also have an environ-

mental basis, although the exact factors involved are not

known at present.
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