
REVIEW

Do polyphenols enter the brain and does it matter? Some
theoretical and practical considerations

Sebastian Schaffer • Barry Halliwell

Received: 13 September 2011 / Accepted: 6 October 2011 / Published online: 20 October 2011

� Springer-Verlag 2011

Abstract Although several epidemiological and inter-

vention studies suggest that polyphenols (PPs) and PP-rich

foods may improve memory and cognition in animals and

humans, PPs’ mode of action is only poorly understood. To

help distinguish between the different modes of action that

have been proposed for PPs, it is obviously important to

know how much PPs can accumulate in the brain, if any at

all. However, reliable data on PP uptake into the brain of

animals are limited as many studies failed to report

important control procedures during data acquisition. In

this paper, we summarize published data on the penetration

of PPs into animal brain and review some hypotheses to

explain the biological basis of potentially health-beneficial

effects of PPs to the brain. Finally, we highlight promising

new approaches, especially those of a hormetic dose-

response and gut microbiota-brain interaction, which may

allow a better understanding of PPs’ mode of action in

animals and humans.
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Introduction

Several epidemiological studies suggest that diets rich in

polyphenols (PPs) beneficially affect human brain function

(Commenges et al. 2000; Letenneur et al. 2007). Similarly,

supplementing rodents and humans with isolated PPs

(Macready et al. 2009; Maher et al. 2006) or PP-rich foods

and plant extracts (e.g. tea, blueberries or pine bark extract)

(Andres-Lacueva et al. 2005; Francis et al. 2006; Macready

et al. 2009; Nurk et al. 2009; Ryan et al. 2008) may improve

memory and cognition. Numerous mechanisms, such as free

radical scavenging, metal chelation and the modulation of

enzyme activities, have been proposed for explaining a

positive impact of PPs on the brain (Schaffer et al. 2006;

Spencer 2008, 2009). However, the existence of direct

antioxidant or other significant systemic effects of PPs,

especially in the brain, are often met with scepticism, mainly

due to the relatively poor intestinal uptake of PPs, their

substantial biotransformation (so that blood and tissue con-

centrations of unaltered PPs are very low) and rapid excre-

tion (Halliwell et al. 2005; Halliwell 2007a, b; Hollman et al.

2011; Hu 2007; Lotito and Frei 2006; Zini et al. 2006).

From first principles, PPs might alter brain function at

three locations: (1) outside the CNS (for instance by

improving cerebral blood flow or by modulating signalling

pathways from peripheral organs to the brain), (2) at the

blood–brain barrier (BBB, e.g. by altering multi-drug-

resistant protein-dependent influx and efflux mechanisms

of various biomolecules) and (3) inside the CNS (e.g. by

directly modifying the activity of neurons and glial cells)

(Ghosh and Scheepens 2009; Spencer 2007; Youdim et al.

2004). To help distinguish between these different modes

of action, it is obviously important to know how much PPs

can accumulate in the brain, if any at all. However, as

many studies failed to report important control procedures,
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reliable data on PP uptake into the brain of animals are

limited. For obtaining meaningful information on this

question, data ideally need to be collected either in

exsanguinated and perfused animals (or tissues) or, alter-

natively, corrected for residual blood in the brain (Youdim

et al. 2004). The importance of accurate in vivo measure-

ments of brain drug exposure is highlighted in a recent

study conducted in rats by Friden et al. (2010) who

developed a mathematical model correcting drug brain

concentrations for residual blood. After applying their

model, the authors noted that concentrations of the drugs

indomethacin and moxalactam in rat brain were signifi-

cantly influenced by the amount of drug present in the

residual blood.

In this paper, we first discuss published data on the

penetration of PPs into animal brain. In cases where the PP-

supplemented animals have neither been perfused nor

residual blood in the brain has been corrected for as

potential confounder, a correction of the reported PP brain

concentrations has been attempted based on the mathe-

matical model published by Friden et al. (2010). The sec-

ond part of the current article summarizes some of the

prevailing hypotheses for explaining the biological basis of

potentially health-beneficial effects of PPs to the brain.

Finally, we highlight promising new approaches that may

allow for better understanding PPs’ mode of action in

animals and humans.

Concentration of polyphenols in brain and the effect

of mathematical correction

Since the mid-1990s, the number of articles published on

PPs has increased exponentially. However, despite the

tremendous interest in PP research, only a small fraction of

all studies addressed the important question of PP uptake

and bioavailability (Fig. 1). Unsurprisingly, our knowledge

regarding PP absorption, metabolism, tissue distribution,

intracellular accumulation and excretion is insufficient.

So far, PP brain bioavailability has mainly been studied

in rodents although at least one study was conducted in

higher organisms, i.e. pigs (Tables 1 and 2). Exsanguinated

and perfused animals are the gold standard for determining

the amount of nutrient or drug that penetrated into the

brain. Data from studies following this approach indicate

that PPs usually accumulate at levels below 1 nmol/g tissue

(Section 1 of Table 2). Similar findings result from studies

where the brain PP concentration has been corrected for

residual blood (Section 2 of Table 2). Furthermore, Janle

et al. (2010) used accelerator mass spectrometry for

detecting small amounts of labelled PPs in brain of per-

fused rats. Apart from this, a substantial number of articles

reported brain PP uptake and concentrations without

considering residual blood as a potential confounder

(Chang et al. 2000; Datla et al. 2001; Huebbe et al. 2010;

Pan et al. 1999; Peng et al. 1998; Purkayastha et al. 2009).

In order to assess the magnitude of residual blood as a

confounder in the quantification of brain PP concentrations,

we applied a recently published mathematical correction

model to one study, as an example (Friden et al. 2010). The

limitation of this approach, however, is that studies only

qualify for re-analysis when the mode of animal anaes-

thesia and killing ideally follow those published by Friden

et al. (Table 3). In this case, the model can also be applied

to other rodents, for example, mice (M. Friden, personal

communication). The latter proposition is supported by a

previous study reporting similar residual blood content (in

per cent) for various rat and mouse organs (Schumann et al.

2007). Unfortunately, none of the studies on brain PP

penetration available to us for evaluation strictly adhered to

the above-mentioned criteria for re-analysis due to differ-

ences in the method of euthanasia and tissue sampling.

However, as also mentioned by Friden et al. (2010),

exsanguination by severing the heart seemed to result in

less residual blood in rat brain compared to brain obtained

from decapitated animals. Based on this notion, applying

the correction model to studies where more residual blood

in the brain samples will likely occur (as a result of the

sampling procedure) can be considered conservative and

will in most cases presumably still overestimate the amount

of PP in the brain sample. Despite the above-mentioned

Fig. 1 Number of hits found for the search term ‘polyphenols’ or

‘polyphenols AND bioavailability’ in PubMed. The search field tag

was limited to ‘Title/Abstract’
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limitations, we suggest that our approach highlights the

often underappreciated problem of confounded levels of

PPs in brain tissue reported in the scientific literature.

In the study selected for re-assessment, female mice

(6–7 weeks old) were fed a PP-poor, semi-synthetic diet

supplemented with quercetin (2 g/kg diet) for 6 weeks

(Huebbe et al. 2010). The brain concentrations of quer-

cetin and its metabolite, isorhamnetin, at baseline and at

the end of the intervention for both control and supple-

mented animals are depicted in Fig. 2. The results of the

mathematical correction model indicate that the actual

amounts of brain quercetin and isorhamnetin in supple-

mented mice are about 8 and 27% lower, respectively,

whereas values for control animals remained unchanged.

Although only of moderate magnitude, the corrected

values for brain PPs, especially of isorhamnetin, suggest

that residual blood might confound supplementation

studies aiming to quantify the enrichment of PPs in brain

beyond baseline data. Somewhat surprising are the high

baseline levels of quercetin in the brain of control animals

Table 1 Methodological parameters of studies assessing PPs concentrations in animal brain (inclusion criteria were either the usage of

exsanguinated and perfused animals or the correction for residual blood by other means)

No. PPs Species Route Dosage Duration Sampling Anaesthesia Killing and

tissue collection

References

Section I: studies in exsanguinated and perfused animals

1 Epicatechin Rat Oral 100 mg/kg BW 1 day 2 h after PP

intake

Phenobarbitone Plasma:

Decapitation

Brain: Perfusion

Abd El

Mohsen

et al.

(2002)

2 Pelargonidin Rat Oral 50 mg/kg BW 1 day 2 h and 18 h

after PP

intake

Pentobarbitone Perfusion El Mohsen

et al.

(2006)

3 Grape seed

extract

Rat Oral 300 mg/kg BW

(twice daily)

3 days 4 h after last PP

intake

Isoflurane Cervical dislocation

and heart puncture

followed by

perfusion

Prasain et al.

(2009)

4 Grape seed

extract

Rat Oral Dose-escalating

design

10 days 8 h after last

administration

– Plasma: Collected

from jugular vein

(catheter)

Brain: Perfusion

Ferruzzi

et al.

(2009)Days 1–2:

50 mg/kg BW

Days 3–4:

100 mg/kg BW

Days 5–10:

150 mg/kg BW

5 Blackberry

extract

Rat Oral 15 g/kg diet

(with

14.8 mmol

anthocyanins/

kg diet)

15 days 3 h after last

meal

Pentobarbital Blood: All blood

drawn from

abdominal aorta

Brain: removed

from bloodless

animals

Talavera

et al.

(2005)

6 Epigallo

catechin-

3-gallate

Rat Oral 500 mg/kg BW 1 day 1 h after

administration

Ether Blood: Collected

from abdominal

artery

Brain: Perfusion

Nakagawa

and

Miyazawa

(1997)

7 Quercetin Rat Oral 1% w/w 1 month No details

given

Pentobarbital Blood: –

Brain: Perfusion

Ishisaka

et al.

(2011)

Section II: studies correcting for residual blood

8 Quercetin Rat Oral 0.1% in diet 11 weeks Morning w/out

overnight

fasting

Isoflurane Full bleeding from

aorta

de Boer

et al.

(2005)

9 Quercetin Pig Oral 500 mg/kg BW 3 days Fasting for 8 h No details

given

No details given

BW body weight
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despite the low quercetin concentrations (0.12 lM) in

blood. The authors provided two possible explanations for

this observation: (1) the transfer of quercetin from the

mothers to their offspring during the intrauterine devel-

opment and (2) the uptake of quercetin (and its sub-

sequent accumulation in the brain) from a standard feed

(Huebbe et al. 2010). Although it is still difficult to say

from current data whether some PPs not only accumulate

but also persist (as the quercetin data for the control

animals suggest) in specific target organs for longer

periods of time, data published for other bioactive com-

pounds, in particular the naturally occurring amino acid

ergothioneine, are consistent with this notion (Cheah and

Halliwell 2011).

Nonetheless, results from the aforementioned mouse

study (Huebbe et al. 2010) in combination with those

reports listed in Table 2 provide reasonable evidence that

PPs do enter the brain at measurable levels. An additional

important parameter affecting the correction for residual

blood and subsequently the uptake of drug into brain is

protein binding (Friden et al. 2010). For example, Diniz

et al. (2008) observed significant, structure-dependent dif-

ferences in the binding behaviours of PPs to plasma pro-

teins, ranging from more than 90% human serum albumin

(HSA) binding affinity for PPs such as apigenin and

quercetin to below 10% as, e.g., in the case of epicatechin.

Noteworthy, plasma fatty acids allosterically inhibit PP

binding to HSA (Bolli et al. 2010), suggesting that dietary

factors might modulate PP plasma, and subsequently, tissue

distribution. The accuracy of PP quantification in brain, of

course, also significantly depends on other parameters,

such as PP extraction efficiency from the tissue as well as

on the applied analytical method (Wilkinson et al. 2002).

Does it matter that polyphenols can enter the brain?

Classically, PPs are considered as potent antioxidants due

to their ability to directly scavenge free radicals and other

reactive species (RS, for details see Halliwell 2006) in vitro

Table 2 PPs concentrations in plasma and animal brain obtained from studies using either exsanguinated and perfused animals or correcting for

residual blood by other means

No. PP measured Plasma conc. Correction achieved by Brain conc. corrected References

Section I: studies in exsanguinated and perfused animals

1 Epicatechin

metabolites (total)

66 uM Perfusion 0.4 nmol/g tissue

(estimated)

Abd El Mohsen et al.

(2002)

2 Pelargonidin

metabolites (total)

2 h: *1.5 uM Perfusion 2 h: 0.16 nmol/g

tissue [43 ng/g]

El Mohsen et al.

(2006)

18 h: *0.65 uM 18 h: \LOD

3 (?)-Catechin \LOD Perfusion 53 ng/g tissue Prasain et al. (2009)

4 Catechin 1.98 ug/ml Perfusion 0.57 ng/g tissue Ferruzzi et al. (2009)

Epicatechin 3.86 ug/ml 0.29 ng/g tissue

5 Cyanidin-3-

glucoside

0.15 uM Blood-less animals used; no explicit

information on brain perfusion

0.21 nmol/g tissue Talavera et al. (2005)

6 Epigallocatechin-3-

gallate

12.3 uM Perfusion 0.5 nmol/g tissue Nakagawa and

Miyazawa (1997)

7 Quercetin No details given Perfusion 40.1 pmol/g tissue Ishisaka et al. (2011)

Section II: studies correcting for residual blood

8 Quercetin 7.7 umol/l Hb method \LOD de Boer et al. (2005)

Isorhamnetin 15.7 umol/l 0.19 nmol/g tissue

Tamarixetin \LOD 0.14 nmol/g tissue

9 Quercetin 1.1 umol/l Hb methods 0.22 nmol/g tissue

Isorhamnetin 0.15 umol/l \LOD

Tamarixetin \LOD \LOD

LOD limit of detection

Table 3 Anaesthesia and tissue collection procedure prior analysis of

brain drug concentrations and their mathematical correction as pub-

lished in Friden et al. (2010)

Step Procedure

1 Anaesthesia with isoflurane

2 Collection of blood sample from abdominal aorta (2 mL) for

analysis

3 Exsanguination by severing the heart

4 Removal of brain, taking of coronal section for analysis
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(Pannala et al. 1997; Russo et al. 2000; Visioli et al. 1998)

and perhaps sometimes also in vivo. Given the brain’s

vulnerability to oxidative and nitrosative stress, the suffi-

cient supply of the CNS with antioxidants is of prime

importance (Halliwell 2006; Reiter 1995).

In the following, we compare the ability of PPs to act as

brain antioxidants with ascorbic acid (AA, vitamin C) one

of the most abundant low-molecular-mass antioxidants in

the mammalian brain (Rice 2000). AA levels of about

2,000 nmol/g tissue have been measured, for instance, in

the brain of perfused, male Wistar rats (Sun et al. 1999).

Some caution has to be taken when conducting vitamin C

studies in rats and mice (both rodent species not only

possess a much higher neuron density per mm3 than

humans—and consequently greater AA content per g brain

tissue—but are also able to synthesize their own vitamin C,

unlike humans who depend on a dietary AA supply).

Nevertheless, rat brain AA levels are in a similar range to

those reported for guinea pigs, which need vitamin C from

the diet (about 1,500 nmol/g tissue; perfused animals

Lykkesfeldt et al. 2007), but are (as expected) higher than

in humans (about 600–900 nmol/g tissue) (Rice 2000;

Terpstra et al. 2011). Compared to PPs (for details see

Table 2), AA brain concentrations of perfused laboratory

rodents are thus about 3,000–4,000 times higher, making it

rather unlikely that PPs, even when considering their

several fold higher in vitro antioxidant activity (Rice-

Evans et al. 1995; Schaffer et al. 2004), exert appreciable

direct RS-scavenging effects in the mammalian brain,

unless they act in different compartments, e.g. lipids,

depending on their solubility in lipophilic and hydrophilic

environments.

Furthermore, the question of whether compounds such

as AA and PPs are active within the CNS also depends on

their compartmentalization between the cerebrospinal fluid

(CSF), extracellular fluid (ECF) and the different types of

brain cells. Concentrations of AA are highest in neurons

(*10 mM), followed by glial cells (*1 mM), CSF

(*500 lM) and ECF (200–400 lM) (Rice 2000). Our

knowledge of PP compartmentalization within the CNS, on

the other hand, is rather scarce. Data from in vitro studies,

however, might serve as a first approximation. First of all,

there is now good evidence from cell culture experiments

that PPs are able to enter at least some cell types (Ernst

et al. 2010; Watjen et al. 2005), and in a few studies, actual

PP uptake has been quantified (Table 4). Assuming an

average cell volume of 22 9 10-13 l [=22 picolitres, based

on cell volume data for HepG2 cells of 12.1 9 10-13 l,

PC12 cells of 20.5 9 10-13 l and cardiac myocytes of

33.4 9 10-13 l (Atkins et al. 1991; Leung et al. 1994;

Wehner et al. 2002)], an estimated quercetin uptake of

20 nmol/106 cells would result in an intracellular quercetin

concentration of 9 mM. This, however, would require the

extracellular presence of PPs at un-physiological concen-

trations of a few hundred micromolar (Table 4). As there is

currently no evidence that CSF and ECF concentrations of

PPs exceed 1–5 micromolar (at best), it is thus highly

unlikely that intracellular PP concentrations in neurons and

glial cells will exceed the very low micromolar to nano-

molar range. This, clearly, is not sufficient for exerting any

appreciable direct antioxidant effect (compared, e.g., to

vitamin C and glutathione)—but might still be high enough

to modulate other cellular parameters in the CNS (see

below).

Direct antioxidant effects of PPs are thus not very likely

in the brain in vivo, nor are there any literature data we are

aware of measuring accurate biomarkers of oxidative

damage that show that PPs have direct antioxidant effects

in the brain. We ought to consider the absence of evidence

as evidence of absence for direct RS-scavenging activities

of PPs in animals and humans, especially as PPs levels in

vivo are likely too low to matter in the face of endogenous

antioxidants (Halliwell and Gutteridge 2007).

How, then, can we explain the several studies reporting

positive effects for PPs on brain function? One research

field attracting more and more attention is the modulation

of monoaminergic and GABA neurotransmission by PPs.

The treatment of rats with PP-rich Ginkgo biloba extract

for 14 days, for example, resulted in significantly increased

extracellular levels of dopamine and noradrenaline (but not

of serotonin) in the animals’ prefrontal cortex (Yoshitake

et al. 2010). Of the three main Ginkgo biloba extract

constituents, the PP (flavonoid) fraction caused a signifi-

cant (and most pronounced) increase in brain dopamine

levels, whereas ginkgolides had only a moderate and

Fig. 2 Effect of mathematical correction for residual blood on the

published concentrations of quercetin (OU) and isorhamnetin (IsoR)

in the brain of quercetin-supplemented mice (Huebbe et al. 2010). For

details see text
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bilobalides no effect (Yoshitake et al. 2010). The observed

effects appear not to depend on the activity of monoamine

oxidases (MAO-A and MAO-B) as these were unchanged in

mice chronically treated with the extract (Fehske et al.

2009). The low concentration of PPs in brain (Table 2)

compared to the Ki values, for instance, of quercetin for

MAO-A of 7.26 lM and for MAO-B of 7.95 lM (Dixon

Clarke and Ramsay 2011) suggests that other parameters,

such as neurotransmitter re-uptake mechanisms, might be

involved in the modulation of monoaminergic neurotrans-

mission by PPs (Fehske et al. 2009; Ofir et al. 2003). Mood

and behavioural disorders often arise from a dysfunctional

neurotransmission and thus might benefit from drug-induced

alterations in the amount of available neurotransmitters

within the CNS (Racagni and Popoli 2010). Neurotrans-

mitter re-uptake inhibition in synaptosomal preparations

has been reported for some PPs and PP-rich plant extract

fractions (e.g. resveratrol, catechin or Ginkgo flavonoids)

but not others (e.g. kaempferol) (Muller et al. 1998; Rocha

et al. 2007; Yanez et al. 2006). Similarly, a plethora of

in vitro data indicates that PPs act as modulators of the

GABAA-benzodiazepine receptor. Whereas the Ki values for

the affinity of many PPs to the receptor is in the one-digit to

two-digit micromolar range, some PPs are effective at lower

(and maybe physiologically achievable) concentrations,

such as amentoflavone with reported Ki values of 6–56 nM

(Jager and Saaby 2011). Much more work, however, needs

to be done in order to understand whether the same PP

actions on GABAA receptors occur in vivo and, even more

challenging, by what mechanism (Hanrahan et al. 2011;

Jager and Saaby 2011).

Based on today’s knowledge, other promising explana-

tions of the possible brain effects of PPs are also indirect in

nature: (1) the activation of a hormetic dose-response and

(2) effects on peripheral systems of the body, which in turn

influence CNS functioning.

Hormesis describes a process in which exposure to a low

dose of an agent that is toxic at higher doses induces a

beneficial effect on the cell or organism (Mattson and

Cheng 2006). Whereas most studies describing hormetic

effects for PPs have been performed in cell culture or the

nematode C. elegans (Ali and Rattan 2006; Gruber et al.

2007; Pietsch et al. 2011; Wagner et al. 2011), recently, the

first direct evidence for hormesis induction in vivo has

been reported in mammals. Pretreatment of mice with the

PP epicatechin significantly reduced the negative impact of

stroke induction in wild-type but not Nrf2 knock-out ani-

mals (Shah et al. 2010). As the transcription factor Nrf2 is

one of the key regulators responsible for the induction of

antioxidant and cell protective genes, this study suggests

Table 4 Cellular uptake of PPs reported for different cell lines

PP Test conc. (lM) Incubation time Cell line Intracellular conc. Study

Apigenin 50 2 h Caco-2 *1.2 nmol/mg protein Yokomizo and Moriwaki (2006)a

Kaempferol *1.8 nmol/mg protein

Luteolin *1.3 nmol/mg protein

Quercetin *0.9 nmol/mg protein

Myricetin ND

Myricetrin ND

Rutin ND

Isoquercitrin ND

Quercetin 500 1 h H4IIE 33.4 nmol/106 cells Watjen et al. (2005)

Fisetin 12.67 nmol/106 cells

Myricetin 0.22 nmol/106 cells

Morin 2.35 nmol/106 cells

Taxifolin 0.2 nmol/106 cells

Rutin 0

Catechin 0

EC 50 1 h Caco-2 0 Vaidyanathan and Walle (2003)a

(?)-Catechin *150 pmol/mg protein

ECG *3,000 pmol/mg protein

EGCG *2,400 pmol/mg protein

Quercetin 5 30 min HepG2 *900 pmol/mg protein Boulton et al. (1999)a

ND not detected

PP polyphenols
a Data were estimated from graphs
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that PPs might indeed operate by hormesis activation. One

caveat affecting the evaluation of hormetic phenomena,

however, needs to be considered based on ontogenetic

studies, i.e. that a subject’s developmental stage might

influence the magnitude of an observed hormetic response.

For example, the U-shaped effects of acute ethanol expo-

sure on overall social activity of rats are not only influ-

enced by the measuring time post-exposure but are also

strongly age-dependent (Spear and Varlinskaya 2005).

Similarly, changes in the penetration efficiency of sub-

stances due to the disruption of the blood–brain barrier, for

example in stroke (Cipolla et al. 2004), might shift the

dose-response away from reference values, posing either

the risk of unexpected side effects or the possibility for an

improved therapeutic outcome. Some authors also noted

the lack of a precise definition of hormesis and furthermore

pointed out that the evaluation of a hormetic response in

terms of possible health effects must be carefully studied as

compounds, even at low dose, might exert significant

beneficial or detrimental effects on physiological and cel-

lular mechanisms, which are often non-linear and chaotic

in nature, such as coronary circulation, neuronal signalling

or calcium oscillation (Chirumbolo 2011; Clay and Shrier

1999; Haberichter et al. 2001; Trzeciakowski and Chilian

2008). The perturbing impact of PPs at concentrations as

low as 1 lM on cellular signalling pathways and metabolic

processes has been demonstrated, for example, for

PP-dependent effects on mitochondrial calcium uptake and

on the activity of protein kinase C (Kalfon et al. 2007;

Montero et al. 2004). Note that there is currently a trend of

moving away from studying PP parent compounds and

towards the assessment of biological activities exerted by

PP metabolites and degradation products. Several extensive

reviews regarding the consequences of PPs and their

metabolites on cellular mechanisms are available (Lau

et al. 2005; Manach et al. 2004; Spencer et al. 2004, 2007;

Visioli et al. 2011), although the overall picture remains

somewhat diffuse given the impressive number of signal-

ling pathways shown to be affected. Whereas little is

known about the in vivo effects of PP metabolites and

degradation products on the brain, evidence from some

studies indicates that these compounds might also enter the

CNS, although usually at a very low level (Abd El Mohsen

et al. 2002; Ferruzzi et al. 2009; Huebbe et al. 2010).

However, many activities of PPs have, so far, only been

demonstrated in cell culture studies, which are prone to

artefacts (Halliwell 2003). Upon exposure to standard cell

culture media (e.g. DMEM, MEM or RPMI), many PPs

become degraded and, at the same time, initiate the

production of hydrogen peroxide in the one-digit to three-

digit micromolar range (Long et al. 2010; Schaffer

and Halliwell 2011). Common medium supplements (such

as pyruvate) or excreted cellular metabolites (for instance

a-ketoglutarate) effectively scavenge PP-derived hydrogen

peroxide and thus become depleted, which can affect

results where pyruvate or a-ketoglutarate are important

growth factors to the cells being cultured (Long and

Halliwell 2009, 2011). Hence, careful thought is essential

when elucidating the in vivo mode of PP action and sub-

sequently their possible areas of preventive or therapeutic

application in humans.

Furthermore, the regulation of brain integrity and function

must not be seen in isolation but as strongly dependent on

feedback information (in the form of hormones, nutrients,

metabolites and, of course, sensory neuron signalling) of the

body periphery. In addition, mainly physico-mechanical

parameters, such as the amount of blood supplied to the

brain, are important factors to consider when assessing CNS

effects of patho-physiological events and preventive/thera-

peutic interventions (e.g. drugs and diet). Endothelial dys-

function, for example, is associated with reduced cerebral

perfusion and the occurrence of dementia (Ghosh and

Scheepens 2009). Reasonable evidence exists that PPs from

cocoa (Francis et al. 2006; Heiss et al. 2007; Heiss et al.

2010) and other dietary sources, such as tea (Grassi et al.

2009) and grapes (Lekakis et al. 2005), increase blood flow in

humans, thus possibly helping to provide the brain with

greater amounts of oxygen and glucose. Negative studies,

however, have also been published on this topic (Auclair

et al. 2010; van Mierlo et al. 2010). A recurrent observation

in many studies assessing the effect of bioactive compounds

(PPs, phytochemicals and plant extracts) is the strong impact

of age and health status on the study outcome. Several

clinical trials indicate that young- to middle-aged healthy

human subjects often do not benefit from the intake of bio-

active compounds when applied in the form of antioxidant

supplements or antioxidant-enriched foods (Boots et al.

2008; Canter and Ernst 2007; Kelly et al. 2008; Lee et al.

2009). Also, older humans suffering from advanced stages of

chronic diseases (such as Alzheimer’s disease) reveal neg-

ligible or zero therapeutic effects when the patients are

treated with PPs or other phytochemicals (Daviglus et al.

2010; Lloret et al. 2009; Quinn et al. 2010). Thus, clearly

more work is needed in order to identify the optimal time

frame for preventive and therapeutic interventions in

humans, probably not too young and not when disease has

progressed to an advanced stage.

Another example highlighting the impact that peripheral

organs can exert on brain (mal)function is metabolic sig-

nalling by the gastro-intestinal tract (GIT). Compared to

blood, dietary PPs can be present in high amounts in the GIT

and could even exert direct antioxidant effects there, e.g. in

the stomach (Halliwell et al. 2000, 2005; Kanner and Lapidot

2001). Some PPs also reach the colon (Jenner et al. 2005;

van Duynhoven et al. 2011). In the past 5–10 years, excit-

ing new information regarding health implications of the
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brain-gut-enteric microbiota axis has emerged (Rhee et al.

2009). Whereas some aspects of this bidirectional interaction

are well established, for instance the effect of mucosal

inflammation on pain reception, effects of gut microbiota on

other CNS-regulated phenomena such as mood changes or

anxious behaviour have only recently been described

(Forsythe et al. 2010; Rhee et al. 2009). A new study by

Heijtz et al. (2011) emphasizes the importance of gut mic-

robiota for brain development and behaviour. When com-

paring specific pathogen-free with germ-free mice, the

authors found significant differences in motor control and

anxiety-like behaviour between the two mouse groups,

possibly indicating that evolution might have driven the link

between gut microbiota and brain development. As PPs

strongly affect both composition and metabolism of the

intestinal microbiota, it is possible that this interaction might

exert effects not only on the GIT but also indirectly on the

brain, especially when considering that luminal microor-

ganisms (about 1011 bacterial cells per gram colon content)

represent 100 times the total genetic material contained in a

human body, thus allowing for a stunning production of a

wide range of metabolites (Forsythe et al. 2010; Rhee et al.

2009). Most of the biological activities that these microbial

metabolites exert on the human body, and especially the

brain, are currently unknown, but they might soon be revo-

lutionizing how we look at human health and disease.

In conclusion, what does the scientific community need

to do with respect to PP research? We propose two

adjustments: (1) the development of more sophisticated

analytical methods to establish levels of PPs and their

metabolites to confirm the view that direct effects on brain

cells and tissue are likely or unlikely and (2) a significant

spike in non-reductionist research efforts for elucidating

bi- and even multi-directional inter-organ actions and

reactions, especially between peripheral organs and the

brain, which are too often studied in isolation. Furthermore,

in order to master the likely overwhelming amount of data

associated with such complex research agendas, experi-

mental research should ideally go hand-in-hand with sys-

tems biology (Assmus et al. 2006; Desiere 2004;

Lemberger 2007). Only then, we predict, will the bio-

medical research community be able to significantly

advance our understanding of the effects of PPs as external

and internal determinants of human health and disease.
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