Skip to main content
Log in

Efficient Production of Cell-permeable Oct4 Protein Using 30Kc19 Protein Originating from Silkworm

  • Research Paper
  • Protein Engineering and Enzyme Technology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Oct4 is a transcription factor (TF), which works as a transcriptional activator and plays an essential role in reprogramming or direct conversion of somatic cells. Many strategies have been reported to transduce TFs including Oct4 into the cells by delivering the gene; however, the reported methods are associated with several problems such as genetic mutation, cytotoxicity, and low transfection efficiency. Although direct delivery of the transcription factors has been suggested as an alternative method, its use is limited due to poor solubility and stability of recombinant TFs. Previously, it has been reported that the conjugation of Bombyx mori 30Kc19 protein not only facilitates intracellular delivery but also augments soluble expression in Escherichia coli and stability of recombinant TFs. However, the expression levels of the 30Kc19-conjugated TFs were still low. In the present work, we reconstituted 30Kc19-conjugated Oct4 protein (Oct4-30Kc19) expressed as inclusion bodies and compared to soluble expression. The insoluble Oct4-30Kc19 was denatured and refolded in an affinity chromatography column. The refolded Oct4-30Kc19 exhibited cell-penetrating property without any significant cytotoxicity and enhancement in thermal stability similar to soluble Oct4-30Kc19; while a drastic increase in total production yield was observed. In addition, the transcriptional activity of the refolded Oct4-30Kc19 was demonstrated through Oct4-GFP reporter assay. It is anticipated that the refolded Oct4-30Kc19 can be utilized as a valuable tool for transgene-free cellular reprogramming and direct conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi, K. and S. Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126: 663–676.

    Article  CAS  Google Scholar 

  2. Sterneckert, J., S. Höing, and H. R. Schöler (2012) Concise review: Oct4 and more: the reprogramming expressway. Stem Cells. 30: 15–21.

    Article  CAS  Google Scholar 

  3. Esch, D., J. Vahokoski, M. R. Groves, V. Pogenberg, V. Cojocaru, H. Vom Bruch, D. Han, H. C. Drexler, M. J. Araúzo-Bravo, C. K. Ng, R. Jauch, M. Wilmanns, and H. R. Schöler (2013) A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat. Cell Biol. 15: 295–301.

    Article  CAS  Google Scholar 

  4. Shi, G. and Y. Jin (2010) Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 1: 39.

    Article  CAS  Google Scholar 

  5. Simandi, Z., A. Horvath, L. C. Wright, I. Cuaranta-Monroy, I. De Luca, K. Karolyi, S. Sauer, J. F. Deleuze, L. J. Gudas, S. M. Cowley, and L. Nagy (2016) OCT4 acts as an integrator of pluripotency and signal-induced differentiation. Mol. Cell. 63: 647–661.

    Article  CAS  Google Scholar 

  6. Nakagawa, M., M. Koyanagi, K. Tanabe, K. Takahashi, T. Ichisaka, T. Aoi, K. Okita, Y. Mochiduki, N. Takizawa, and S. Yamanaka (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26: 101–106.

    Article  CAS  Google Scholar 

  7. Li, W., E. Tian, Z. X. Chen, G. Sun, P. Ye, S. Yang, D. Lu, J. Xie, T. V. Ho, W. M. Tsark, C. Wang, D. A. Horne, A. D. Riggs, M. L. Yip, and Y. Shi (2012) Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proc. Natl. Acad. Sci. USA. 109: 20853–20858.

    Article  CAS  Google Scholar 

  8. Kim, J. B., B. Greber, M. J. Araúzo-Bravo, J. Meyer, K. I. Park, H. Zaehres, and H. R. Schöler (2009) Direct reprogramming of human neural stem cells by OCT4. Nature. 461: 649–653.

    Article  CAS  Google Scholar 

  9. Thier, M., P. Wörsdörfer, Y. B. Lakes, R. Gorris, S. Herms, T. Opitz, D. Seiferling, T. Quandel, P. Hoffmann, M. M. Nöthen, O. Brüstle, and F. Edenhofer (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 10: 473–479.

    Article  CAS  Google Scholar 

  10. Han, D. W., N. Tapia, A. Hermann, K. Hemmer, S. Höing, M. J. Araúzo-Bravo, H. Zaehres, G. Wu, S. Frank, S. Moritz, B. Greber, J. H. Yang, H. T. Lee, J. C. Schwamborn, A. Storch, and H. R. Schöler (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 10: 465–472.

    Article  CAS  Google Scholar 

  11. Szabo, E., S. Rampalli, R. M. Risueno, A. Schnerch, R. Mitchell, A. Fiebig-Comyn, M. Levadoux-Martin, and M. Bhatia (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature. 468: 521–526.

    Article  CAS  Google Scholar 

  12. Efe, J. A., S. Hilcove, J. Kim, H. Zhou, K. Ouyang, G. Wang, J. Chen, and S. Ding (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13: 215–222.

    Article  CAS  Google Scholar 

  13. Yamamoto, K., T. Kishida, Y. Sato, K. Nishioka, A. Ejima, H. Fujiwara, T. Kubo, T. Yamamoto, N. Kanamura, and O. Mazda (2015) Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc. Natl. Acad. Sci. USA. 112: 6152–6157.

    Article  CAS  Google Scholar 

  14. González, F., S. Boué, and J. C. Izpisúa Belmonte (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat. Rev. Genet. 12: 231–242.

    Article  Google Scholar 

  15. Yu, J., K. Hu, K. Smuga-Otto, S. Tian, R. Stewart, I. I. Slukvin, and J. A. Thomson (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324: 797–801.

    Article  CAS  Google Scholar 

  16. Woltjen, K., I. P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hämäläinen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H. K. Sung, and A. Nagy (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458: 766–770.

    Article  CAS  Google Scholar 

  17. Okita, K., Y. Matsumura, Y. Sato, A. Okada, A. Morizane, S. Okamoto, H. Hong, M. Nakagawa, K. Tanabe, K. Tezuka, T. Shibata, T. Kunisad, M. Takahashi, J. Takahashi, H. Saji, and S. Yamanaka (2011) A more efficient method to generate integration-free human iPS cells. Nat. Methods. 8: 409–412.

    Article  CAS  Google Scholar 

  18. Warren, L., P. D. Manos, T. Ahfeldt, Y. H. Loh, H. Li, F. Lau, W. Ebina, P. K. Mandal, Z. D. Smith, A. Meissner, G. Q. Daley, A. S. Brack, J. J. Collins, C. Cowan, T. M. Schlaeger, and D. J. Rossi (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7: 618–630.

    Article  CAS  Google Scholar 

  19. Sharei, A., J. Zoldan, A. Adamo, W. Y. Sim, N. Cho, E. Jackson, S. Mao, S. Schneider, M. J. Han, A. Lytton-Jean, P. A. Basto, S. Jhunjhunwala, J. Lee, D. A. Heller, J. W. Kang, G. C. Hartoularos, K. S. Kim, D. G. Anderson, R. Langer, and K. F. Jensen (2013) A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA. 110: 2082–2087.

    Article  CAS  Google Scholar 

  20. Cho, H. J., C. S. Lee, Y. W. Kwon, J. S. Paek, S. H. Lee, J. Hur, E. J. Lee, T. Y. Roh, I. S. Chu, S. H. Leem, Y. Kim, H. J. Kang, Y. B. Park, and H. S. Kim (2010) Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood. 116: 386–395.

    Article  CAS  Google Scholar 

  21. Zhou, H., S. Wu, J. Y. Joo, S. Zhu, D. W. Han, T. Lin, S. Trauger, G. Bien, S. Yao, Y. Zhu, G. Siuzdak, H. R. Schöler, L. Duan, and S. Ding (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 4: 381–384.

    Article  CAS  Google Scholar 

  22. Kim, D., C. H. Kim, J. I. Moon, Y. G. Chung, M. Y. Chang, B. S. Han, S. Ko, E. Yang, K. Y. Cha, R. Lanza, and K. S. Kim (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 4: 472–476.

    Article  CAS  Google Scholar 

  23. Zhang, H., Y. Ma, J. Gu, B. Liao, J. Li, J. Wong, and Y. Jin (2012) Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors. Biomaterials. 33: 5047–5055.

    Article  CAS  Google Scholar 

  24. Lim, J., J. Kim, J. Kang, and D. Jo (2014) Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Sci. Rep. 4: 4361.

    Article  Google Scholar 

  25. Park, J. H., J. H. Lee, H. H. Park, W. J. Rhee, S. S. Choi, and T. H. Park (2012) A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomaterials. 33: 9127–9134.

    Article  CAS  Google Scholar 

  26. Park, H. H., Y. Sohn, J. W. Yeo, J. H. Park, H. J. Lee, J. Ryu, W. J. Rhee, and T. H. Park (2014) Identification and characterization of a novel cell-penetrating peptide of 30Kc19 protein derived from Bombyx mori. Process Biochem. 49: 1516–1526.

    Article  CAS  Google Scholar 

  27. Park, J. H., H. H. Park, S. S. Choi, and T. H. Park (2012) Stabilization of enzymes by the recombinant 30Kc19 protein. Process Biochem. 47: 164–169.

    Article  CAS  Google Scholar 

  28. Lee, H. J., H. H. Park, J. A. Kim, J. H. Park, J. Ryu, J. Choi, J. Lee, W. J. Rhee, and T. H. Park (2014) Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials. 35: 1696–1704.

    Article  CAS  Google Scholar 

  29. Ryu, J., H. H. Park, J. H. Park, H. J. Lee, W. J. Rhee, and T. H. Park (2016) Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl. Microbiol. Biotechnol. 100: 3523–3532.

    Article  CAS  Google Scholar 

  30. Gafni, O., L. Weinberger, A. A. Mansour, Y. S. Manor, E. Chomsky, D. Ben-Yosef, Y. Kalma, S. Viukov, I. Maza, A. Zviran, Y. Rais, Z. Shipony, Z. Mukamel, V. Krupalnik, M. Zerbib, S. Geula, I. Caspi, D. Schneir, T. Shwartz, S. Gilad, D. Amann-Zalcenstein, S. Benjamin, I. Amit, A. Tanay, R. Massarwa, N. Novershtem, and J. H. Hanna (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature. 504: 282–286.

    Article  CAS  Google Scholar 

  31. Thier, M., B. Münst, and F. Edenhofer (2010) Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. Int. J. Dev. Biol. 54: 1713–1721.

    Article  CAS  Google Scholar 

  32. Han, M. J., H. R. Kim, C. O’Reilly, and C. H. Kim (2017) Purification of functional reprogramming factors in mammalian cell using FLAG-Tag. Biochem. Biophys. Res. Commun. 492: 154–160.

    Article  CAS  Google Scholar 

  33. Dai, Y., Y. Guo, C. Wang, Q. Liu, Y. Yang, S. Li, X. Guo, R. Lian, R. Yu, H. Liu, and J. Chen (2014) Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS One. 9: e109856.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF- 2017M3A9C6031798) and the Ministry of Education (NRF- 2018R1D1A1B07050422). This study was also supported by 2017 Research Grant from Kangwon National University (No. 520170405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Hyun Park.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Park, H.H. & Park, J.H. Efficient Production of Cell-permeable Oct4 Protein Using 30Kc19 Protein Originating from Silkworm. Biotechnol Bioproc E 24, 964–971 (2019). https://doi.org/10.1007/s12257-019-0204-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0204-5

Keywords

Navigation