Skip to main content
Log in

Exploring Binding Mechanisms between Curcumin and Silkworm 30Kc19 Protein Using Spectroscopic Analyses and Computational Simulations

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The curry compound, curcumin exerts multiple health-promotive functions; however, its poor solubility and stability limits its biological applications. In this study, we illuminate intermolecular binding mechanisms in the nano-sized complex of curcumin with silkworm protein, 30Kc19. The intrinsic fluorescence of 30Kc19 was gradually quenched by the increase of curcumin concentrations, which demonstrates molecule-molecule complexations mediated by the fluorophore amino acid residues (Tyr, Trp) in the protein. The fluorescence quenching showed that the binding occurred at 1:1 molar ratio with binding constant of 3.28 × 104 M-1. The results from scanning electron microscopy and dynamic light scattering indicate that the complexes were formed with cubicle shapes and sizes of 200–250 nm at pH 8.0 (zeta-potential < −20 mV). Along with Fourier transform infrared analysis, computational studies of protein-ligand docking simulation suggest a mechanism that curcumin and 30Kc19 forms complexes through specific amino acid residues (Trp174, Trp180, and Trp225) with minimum binding distance (4 Å). The complexation of curcumin with 30Kc19 protein effectively suppressed the degradation of curcumin over 10 h and improved its antioxidant activity up to 30%. These findings suggest an application of 30Kc19 for the delivery of waterinsoluble bioactive medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goel, A., A. B. Kunnumakkara, and B. B. Aggarwal (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75: 787–809.

    Article  CAS  PubMed  Google Scholar 

  2. Ruby, A. J., G. Kuttan, K. D. Babu, K. N. Rajasekharan, and R. Kuttan (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94: 79–83.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J., H. Wang, R. Zhu, Q. Liu, J. Fei, and S. Wang (2015) Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1ß transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 53: 475–483.

    Article  CAS  PubMed  Google Scholar 

  4. Gong, C., S. Deng, Q. Wu, M. Xiang, X. Wei, L. Li, X. Gao, B. Wang, L. Sun, Y. Chen, Y. Li, L. Liu, Z. Qian, and Y. Wei (2013) Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34: 1413–1432.

    Article  CAS  PubMed  Google Scholar 

  5. Tang, H., C. J. Murphy, B. Zhang, Y. Shen, E. A. Van Kirk, W. J. Murdoch, and M. Radosz (2010) Curcumin polymers as anticancer conjugates. Biomaterials 31: 7139–7149.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, K. K., P. S. Chan, S. Fan, S. M. Kwan, K. L. Yeung, Y. X. J. Wang, A. H. L. Chow, E. X. Wu, and L. Baum (2015) Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44: 155–172.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, M., Y. Wu, J. Li, H. Zhou, and X. Wang (2013) Binding of curcumin with bovine serum albumin in the presence of ω- carrageenan and implications on the stability and antioxidant activity of curcumin. J. Agric. Food Chem. 61: 7150–7155.

    Article  CAS  PubMed  Google Scholar 

  8. Esatbeyoglu, T., P. Huebbe, I. M. Ernst, D. Chin, A. E. Wagner, and G. Rimbach (2012) Curcumin-from molecule to biological function. Angew. Chemie Int. Ed. 51: 5308–5332.

    Article  CAS  Google Scholar 

  9. Gupta, S. C., S. Prasad, J. H. Kim, S. Patchva, L. J. Webb, I. K. Priyadarsini, and B. B. Aggarwal (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 28: 1937–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esmaili, M., S. M. Ghaffari, Z. Moosavi-Movahedi, M. S. Atri, A. Sharifizadeh, M. Farhadi, R. Yousefi, J. M. Chobert, T. Haertlé, and A. A. Moosavi-Movahedi (2011) Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Sci. Technol. 44: 2166–2172.

    Article  CAS  Google Scholar 

  11. Wang, Y. J., M. H. Pan, A. L. Cheng, L. I. Lin, Y. S. Ho, C. Y. Hsieh, and J. K. Lin (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15: 1867–1876.

    Article  CAS  PubMed  Google Scholar 

  12. Yazdi, S. R. and M. Corredig (2012) Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food Chem. 132: 1143–1149.

    Google Scholar 

  13. Sneharani, A. H., J. V. Karakkat, S. A. Singh, and A. A. Rao (2010) Interaction of curcumin with ß-lactoglobulin stability, spectroscopic analysis, and molecular modeling of the complex. J. Agric. Food Chem. 58: 11130–11139.

    Article  CAS  PubMed  Google Scholar 

  14. Tapal, A. and P. K. Tiku (2012) Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 130: 960–965.

    Article  CAS  Google Scholar 

  15. Bourassa, P., C. D. Kanakis, P. Tarantilis, M. G. Pollissiou, and H. A. Tajmir-Riahi (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B 114: 3348–3354.

    Article  CAS  PubMed  Google Scholar 

  16. Park, H. H., Y. Sohn, J. W. Yeo, J. H. Park, H. J. Lee, J. Ryu, W. J. Rhee, and T. H. Park (2014) Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration. Biotechnol. J. 9: 1582–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, J. P., X. X. Ma, Y. X. He, W. F. Li, Y. Kang, R. Bao, Y. Chen, and C. Z. Zhou (2011) Crystal structure of the 30 K protein from the silkworm Bombyx mori reveals a new member of the ß-trefoil superfamily. J. Struct. Biol. 175: 97–103.

    Article  CAS  PubMed  Google Scholar 

  18. Ryu, J., H. H. Park, J. H. Park, H. J. Lee, W. J. Rhee, and T. H. Park (2016) Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl. Microbiol. Biotechnol. 100: 3523–3532.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, E. J., W. J. Rhee, and T. H. Park (2004) Inhibition of apoptosis by a Bombyx mori gene. Biotechnol. Prog. 20: 324–329.

    Article  CAS  PubMed  Google Scholar 

  20. Choi, S. S., Rhee, W. J. and Park, T. H. (2005) Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol. Bioeng. 91: 793–800.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, H. J., H. H. Park, J. A. Kim, J. H. Park, J. Ryu, J. Choi, J. Lee, W. J. Rhee, and T. H. Park (2014) Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials. 35: 1696–1704.

    Article  CAS  PubMed  Google Scholar 

  22. Park, J. H., J. H. Lee, H. H. Park, W. J. Rhee, S. S. Choi, and T. H. Park (2012) A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomaterials 33: 9127–9134.

    Article  CAS  PubMed  Google Scholar 

  23. Li, M., Y. Ma, and M. O. Ngadi (2013) Binding of curcumin to ß-lactoglobulin and its effect on antioxidant characteristics of curcumin. Food Chem. 141: 1504–1511.

    Article  CAS  PubMed  Google Scholar 

  24. Jahanban-Esfahlan, A. and V. Panahi-Azar (2016) Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chem. 202: 426–431.

    Article  CAS  PubMed  Google Scholar 

  25. Schneidman-Duhovny, D., Y. Inbar, R. Nussinov, and H. Wolfson (2005) Nucleic Acids Res. Web Server issue: 363–367.

    Google Scholar 

  26. Raza, M., A. Ahmad, F. Yue, Z. Khan, Y. Jiang, Y. Wei, S. Raza, W. W. He, F. U. Khan, and Y. Qipeng (2017) Biophysical and molecular docking approaches for the investigation of biomolecular interactions between amphotericin B and bovine serum albumin. J. Photochem. Photobiol. B Biol. 170: 6–15.

    Article  CAS  Google Scholar 

  27. Salentin, S., S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 43: 443–447.

    Article  CAS  Google Scholar 

  28. Humphrey, W., A. Dalke, and K. Schulten (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14: 33–38.

    Article  CAS  PubMed  Google Scholar 

  29. DeLano, W. L (2002) Pymol: An open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40: 82–92.

    Google Scholar 

  30. You, J. S., S. Jeon, Y. J. Byun, S. Koo, and S. S. Choi (2015) Enhanced biological activity of carotenoids stabilized by phenyl groups. Food Chem. 177: 339–345.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, H., Q. Yang, and X. Wang (2014) Spectrometric study on the binding of curcumin with AOT: Effect of micelle-to-vesicle transition. Food Chem. 161: 136–141.

    Article  CAS  PubMed  Google Scholar 

  32. Ke, D., X. Wang, Q. Yang, Y. Niu, S. Chai, Z. Chen, X. An, and W. Shen (2011) Spectrometric study on the interaction of dodecyltrimethylammonium bromide with curcumin. Langmuir 27: 14112–14117.

    Article  CAS  PubMed  Google Scholar 

  33. Singh, P. K., V. Kotia, D. Ghosh, G. M. Mohite, A. Kumar, and S. K. Maji (2012) Curcumin modulates a-synuclein aggregation and toxicity. ACS Chem. Neurosci. 4: 393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lakowicz, J.R. (2006) Principles of Fluorescence Spectroscopy. 3rd edition., pp. 277–330. Springer US, Boston, USA.

    Book  Google Scholar 

  35. Wang, R. Q., Y. J. Yin, H. Li, Y. Wang, J. J. Pu, R. Wang, H. J. Dou, C. J. Song, and R. Y. Wang (2013) Comparative study of the interactions between ovalbumin and three alkaloids by spectrofluorimetry. Mol. Biol. Rep. 40: 3409–3418.

    Article  CAS  PubMed  Google Scholar 

  36. Ognjenovic, J., M. Stojadinovic, M. Milcic, D. Apostolovic, J. Vesic, I. Stambolic, M. Atanaskovic-Markovic, M. Simonovic, and T. C. Velickovic (2014) Interactions of epigallo-catechin 3-gallate and ovalbumin, the major allergen of egg white. Food Chem. 164: 36–43.

    Article  CAS  PubMed  Google Scholar 

  37. Mandeville, J. S., E. Froehlich, and H. A. Tajmir-Riahi (2009) Study of curcumin and genistein interactions with human serum albumin. J. Pharm. Biomed. Anal. 49: 468–474.

    Article  CAS  PubMed  Google Scholar 

  38. Mohammadi, F. and M. Moeeni (2015) Study on the interactions of trans-resveratrol and curcumin with bovine a-lactalbumin by spectroscopic analysis and molecular docking. Mater. Sci. Eng. C 50: 358–366.

    Article  CAS  Google Scholar 

  39. Peng, X., X. Wang, W. Qi, R. Huang, R. Su, and Z. He (2015) Deciphering the binding patterns and conformation changes upon the bovine serum albumin–rosmarinic acid complex. Food Funct. 6: 2712–2726.

    Article  CAS  PubMed  Google Scholar 

  40. He, Z., M. Xu, M. Zeng, F. Qin, and J. Chen (2016) Interactions of milk a-and ß-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chem. 199: 314–322.

    Article  CAS  PubMed  Google Scholar 

  41. Bouraßsa, P., J. Bariyanga, and H. A. Tajmir-Riahi (2013) Binding sites of resveratrol, genistein, and curcumin with milk a- and ß-caseins. J. Phys. Chem. B 117: 1287–1295.

    Article  CAS  Google Scholar 

  42. Pu, H., H. Jiang, R. Chen, and H. Wang (2014) Studies on the interaction between vincamine and human serum albumin: A spectroscopic approach. Luminescence 29: 471–479.

    Article  CAS  PubMed  Google Scholar 

  43. Farrokhpour, H., V. Pakatchian, A. Hajipour, F. Abyar, A. N. Chermahini, and F. Fakhari (2015) Protein–ligand interaction study of signal transducer smoothened protein with different drugs: molecular docking and QM/MM calculations. RSC Adv. 5: 68829–68838.

    Article  CAS  Google Scholar 

  44. von Staszewski, M., F. L. Jara, A. L. Ruiz, R. J. Jagus, J. E. Carvalho, and A. M. Pilosof (2012) Nanocomplex formation between ß-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. J. Funct. Foods 4: 800–809.

    Article  CAS  Google Scholar 

  45. Leung, M. H. M., H. Colangelo, and T. W. Kee (2008) Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir 24: 5672–5675.

    Article  CAS  PubMed  Google Scholar 

  46. Sadat, L., C. Cakir-Kiefer, M. A. N’Negue, J. L. Gaillard, J. M. Girardet, and L. Miclo (2011) Isolation and identification of antioxidative peptides from bovine a-lactalbumin. Int. Dairy J. 21: 214–221.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Sik Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdur Razzak, M., Lee, J.E., Park, H.H. et al. Exploring Binding Mechanisms between Curcumin and Silkworm 30Kc19 Protein Using Spectroscopic Analyses and Computational Simulations. Biotechnol Bioproc E 23, 605–616 (2018). https://doi.org/10.1007/s12257-018-0285-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0285-6

Keywords

Navigation