Skip to main content
Log in

Inhibition of Endoplasmic Reticulum Stress-induced Apoptosis by Silkworm Storage Protein 1

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) plays essential roles indispensable for cellular activity and survival, including functions such as protein synthesis, secretory and membrane protein folding, and Ca2+ release in cells. The ER is sensitive to stresses that can lead to the aggregation and accumulation of misfolded proteins, which eventually triggers cellular dysfunction; severe or prolonged ER stress eventually induces apoptosis. ER stress-induced apoptosis causes several devastating diseases such as atherosclerosis, neurodegenerative diseases, and diabetes. In addition, the production of biopharmaceuticals such as monoclonal antibodies requires the maintenance of normal ER functions to achieve and maintain the production of high-quality products in good quantities. Therefore, it is necessary to develop methods to efficiently relieve ER stress and protect cells from ER stress-induced apoptosis. The silkworm storage protein 1 (SP1) has anti-apoptotic activities that inhibit the intrinsic mitochondrial apoptotic pathway. However, the role of SP1 in controlling ER stress and ER stress-induced apoptosis has not been investigated. In this paper, we demonstrate that SP1 can inhibit apoptosis induced by a well-known ER stress inducer, thapsigargin, by alleviating the decrease in cell viability and mitochondrial membrane potential. Interestingly, SP1 significantly blocked increases in CHOP and GRP78 expression as well as ER Ca2+ leakage into the cytosol following ER stress induction. This indicates that SP1 protects cells from ER stressinduced apoptosis by functioning as an upstream inhibitor of apoptosis. Therefore, studying SP1 function can offer new insights into protecting cells against ER stress-induced apoptosis for future applications in the biopharmaceutical and medicine industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Logue, S. E., A. M. Gorman, P. Cleary, N. Keogh, and A. Samli (2013) Current concepts in ER stress-induced apoptosis. J. Carcinogen. Mutagene. 6.

    Google Scholar 

  2. Naidoo, N. (2009) ER and aging-Protein folding and the ER stress response. Ageing Res. Rev. 8: 150–159.

    Article  CAS  Google Scholar 

  3. Braakman, I. and N. J. Bulleid (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80: 71–99.

    Article  CAS  Google Scholar 

  4. Yang, Y., X. Pei, Y. Jin, Y. Wang, and C. Zhang (2016) The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res. 363: 589–597.

    Article  CAS  Google Scholar 

  5. Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Meth. 35: 373–381.

    Article  CAS  Google Scholar 

  6. Wong, D. C., K. T. Wong, Y. Y. Lee, P. N. Morin, C. K. Heng, and M. G. Yap (2006) Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol. Bioeng. 94: 373–382.

    Article  CAS  Google Scholar 

  7. Szegezdi, E., S. E. Logue, A. M. Gorman, and A. Samali (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7: 880–885.

    Article  CAS  Google Scholar 

  8. Oyadomari, S. and M. Mori (2004) Role of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11: 381–389.

    Article  CAS  Google Scholar 

  9. McCullough, K. D., J. L. Martindale, L. O. Klotz, T. Y. Aw, and N. J. Holbrook (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21: 1249–1259.

    Article  CAS  Google Scholar 

  10. Doerks, T., R. R. Copley, J. Schultz, C. P. Ponting, and P. Bork (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genom. Res. 12: 47–56.

    Article  CAS  Google Scholar 

  11. Gupta, S., L. Cuffe, E. Szegezdi, S. E. Logue, C. Neary, S. Healy, and A. Samali (2010) Mechanisms of ER stress-mediated mitochondrial membrane permeabilization. Int. J. Cell Biol. 2010: 170215.

    Article  Google Scholar 

  12. Lisa, F. Di., R. Menabo, M. Canton, M. Barile, and P. Bernardi (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276: 2571–2575.

    Article  Google Scholar 

  13. Gupta, S., G. E. Kass, E. Szegezdi, and B. Joseph. (2009) The mitochondrial death pathway: A promising therapeutic target in diseases. J. Cell. Mol. Med. 13: 1004–1033.

    Article  CAS  Google Scholar 

  14. Kim, E. J., W. J. Rhee, and T. H. Park (2001) Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori. Biochem. Biophys. Res. Commun. 285: 224–228.

    Article  CAS  Google Scholar 

  15. Lee, J. H., T. H. Park, and W. J. Rhee (2015) Inhibition of apoptosis in HeLa cell by silkworm storage protein 1, SP1. Biotechnol. Bioproc. Eng. 20: 807–813.

    Article  CAS  Google Scholar 

  16. Kim, E. J., H. J. Park, and T. H. Park. (2003) Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph. Biochem. Biophys. Res. Commun. 308: 523–528.

    Article  CAS  Google Scholar 

  17. Choi, S. S., W. J. Rhee, and T. H. Park (2005) Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol. Bioeng. 91: 793–800.

    Article  CAS  Google Scholar 

  18. Zamzami, N., S. A. Susin, P. Marchetti, and T. Hirsch (1996) Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183: 1533–1544.

    Article  CAS  Google Scholar 

  19. Lee, A. S. (2001) The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem. Sci. 26: 504–510.

    Article  CAS  Google Scholar 

  20. Lee, A. S. (1987) Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci. 12: 20–23.

    Article  CAS  Google Scholar 

  21. Li, J. and A. S. Lee (2006) Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med. 6: 45–54.

    Article  CAS  Google Scholar 

  22. Thastrup, O., P. J. Cullen, B. K. Brobak, M. R. Hanly, and A. P. Dawson (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci. USA. 87: 2466–2470.

    Article  CAS  Google Scholar 

  23. Li, W. W., S. Alexandre, X. Cao, and A. S. Lee (1993) Transactivation of the grp78 promoter by Ca2+ depletion: A comparative analysis with A23187 and the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. J. Biol. Chem. 268: 12003–12009.

    CAS  Google Scholar 

  24. Tabas, I. and D. Ron (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13: 184–190.

    Article  CAS  Google Scholar 

  25. Kaufman, R. J. (2002) Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110: 1389–1398.

    Article  CAS  Google Scholar 

  26. Prashad, K. and S. Mehra (2015) Dynamics of unfolded protein response in recombinant CHO cells. Cytotechnol. 67: 237–254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Jong Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, Y.J., Baik, J.E. & Rhee, W.J. Inhibition of Endoplasmic Reticulum Stress-induced Apoptosis by Silkworm Storage Protein 1. Biotechnol Bioproc E 23, 194–200 (2018). https://doi.org/10.1007/s12257-017-0424-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0424-5

Keywords

Navigation