Skip to main content
Log in

Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Rapeseed straw was utilized as a cheap raw material for ethanol production. Effects of steam explosion on chemical composition, enzymatic hydrolysis (EH) and simultaneous saccharification and fermentation (SSF) were studied. Changes in the pretreatment conditions showed strong effects on digestibility of the resulting straw. The optimum results were obtained at 180°C, 10% solid fraction, 1% H2SO4, and 10 min retention time. Under optimal condition, glucose hydrolysis yields of 93 and 89% were obtained for 5 and 10% solid fractions, respectively. The corresponding ethanol yields were 63 and 67% of maximum theoretical value. Next, data of the experimental runs were exploited for modeling the processes by artificial neural networks (ANNs) and performance of the developed models was evaluated. The ANN-based models showed a great potential for time-course prediction of the studied processes. Efficiency of the joint network for simulating the whole process was also determined and promising results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Díaz, M. J., C. B. Cara, E. N. Ruiz, I. Romero, M. Moya, and E. Castro (2010) Hydrothermal pre-treatment of rapeseed straw. Bioresour. Technol. 101: 2428–2435.

    Article  Google Scholar 

  2. Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat (2012) Bioethanol production from agricultural wastes: An overview. Renew. Energ. 37: 19–27.

    Article  CAS  Google Scholar 

  3. Hsu, T. A. (1996) Pretreatment of biomass, Washington DC, Taylor & Francis, USA.

    Google Scholar 

  4. Hu, G., J. A. Heitmann, and O. J. Rojas (2008) Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources. 3: 270–294.

    Google Scholar 

  5. Talebnia, F., D. Karakashev, and I. Angelidaki (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101: 4744–4753.

    Article  CAS  Google Scholar 

  6. Varga, E., K. Réczey, and G. Zacchi (2004) Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. App. Biochem.Biotechnol. — Part A Enz. Eng. Biotechnol. 114: 509–523.

    Article  Google Scholar 

  7. Mackie, K. L., H. H. Brownell, K. L. West, and J. N. Saddler (1985) Effect of sulphur dioxide and sulphuric acid on steam explosion of Aspenwood. J. Wood Chem. Technol. 5: 405–425.

    Article  CAS  Google Scholar 

  8. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11.

    Article  CAS  Google Scholar 

  9. Taherzadeh, M. J., L. Gustafsson, C. Niklasson, and G. Lidén (1999) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microb. Biotechnol. 53: 701–708.

    Article  Google Scholar 

  10. Talebnia, F., C. Niklasson, and M. J. Taherzadeh (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol. Bioeng. 90: 345–353.

    Article  CAS  Google Scholar 

  11. Bas, D., F. C. Dudak, and I. H. Boyaci (2007) Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model. J. Food Eng. 79: 622–628.

    Article  CAS  Google Scholar 

  12. Chang, C. W., W. C. Yu, W. J. Chen, R. F. Chang, and W. S. Kao (2011) A study on the enzymatic hydrolysis of steam exploded Napier grass with alkaline treatment using artificial neural networks and regression analysis. J. Taiwan Inst. Chem. E. 42: 889–894.

    Article  CAS  Google Scholar 

  13. Basheer, I. A. and M. Hajmeer (2000) Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Meth. 43: 3–31.

    Article  CAS  Google Scholar 

  14. Hajmeer, M. and I. Basheer (2003) Comparison of logistic regression and neural network-based classifiers for bacterial growth. Food Microbiol. 20: 43–55.

    Article  Google Scholar 

  15. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2010) Determination of structural carbohydrates and lignin in Biomass. NREL — Laboratory Analytical Procedure (LAP).

    Google Scholar 

  16. Decker, S. R., W. S. Adney, E. Jennings, T. B. Vinzant, and M. E. Himmel (2003) Automated filter paper assay for determination of cellulase activity. Appl. Biochem. Biotechnol. 105: 689–703.

    Article  Google Scholar 

  17. Jeong, T. S., B. H. Um, J. S. Kim, and K. K. Oh (2010) Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose. Appl. Biochem. Biotechnol. 161: 22–33.

    Article  CAS  Google Scholar 

  18. Galbe, M. and G. Zacchi (2002) A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59: 618–628.

    Article  CAS  Google Scholar 

  19. Tomás-Pejó, E., J. M. Oliva, and M. Ballesteros (2008) Realistic approach for full-scale bioethanol production from lignocellulose: A review. J. Sci. Ind. Res. 67: 874–884.

    Google Scholar 

  20. Choi, C. H., J. S. Kim, and K. K. Oh (2013) Evaluation the efficacy of extrusion pretreatment via enzymatic digestibility and simultaneous saccharification & fermentation with rapeseed straw. Biomas. Bioenerg. 54: 211–218.

    Article  CAS  Google Scholar 

  21. Lopez-Linares, J. C., I. Romero, C. Cara, E. Ruiz, E. Castro, and M. Moya (2013) Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. J. Chem. Technol. Biotechnol. DOI 10.1002/jctb.4110.

    Google Scholar 

  22. Tomas, A. F., P. Karagoz, D. Karakashev, and I. Angelidaki (2013) Extreme thermophilic ethanol production from rapeseed straw: Using the newly isolated thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a Two-Step. Proc. Biotech. Bioeng. 110: 1574–1582.

    Article  CAS  Google Scholar 

  23. Bobleter, O. (1994) Hydrothermal degradation of polymers derived from plants. Elsevier, Kidlington, ROYAUME-UNI.

    Google Scholar 

  24. Lawther, M., R. Sun, and W. B. Banks (1996) Effect of steam treatment on the chemical composition of wheat straw. Holzforschung. 50: 365–371.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Talebnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebnia, F., Mighani, M., Rahimnejad, M. et al. Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks. Biotechnol Bioproc E 20, 139–147 (2015). https://doi.org/10.1007/s12257-013-0535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0535-6

Keywords

Navigation