Skip to main content
Log in

Detoxification of hexavalent chromate by Amphibacillus sp. KSUCr3 cells immobilised in silica-coated magnetic alginate beads

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently isolated Cr(VI)-reducing Amphibacillus KSUCr3 whole cells were immobilised in magnetic gels. Magnetic magnetite (Fe3O4) nanoparticles were synthesised with an average particle size of 47 nm and 80 electromagnetic unit (emu)/g saturation magnetisation. Whole cells were immobilised by entrapment in agar, agarose, alginate, or gelatin in the presence or absence of Fe3O4 nanoparticles for the preparation of both magnetic and nonmagnetic immobilised cells. Of the gels tested, alginate was selected as the best immobilisation matrix, and following optimisation of the entrapment process, the immobilisation yield reached 92.5%. In addition to the ease of separation and reuse of the magnetic cell-containing alginate beads using an external magnet, the magnetically immobilised cells showed approximately 16% higher Cr(VI) reduction activity compared with nonmagnetic immobilised cells. To improve their physical and mechanical properties, the magnetic alginate beads were successfully coated with a dense silica layer using sol-gel chemistry and Ca(OH)2, an alkaline catalyst for tetraethyl orthosilicate, to avoid leaching of Ca2+ ions. Amphibacillus KSUCr3 cells immobilised in silica-coated magnetic alginate beads showed approximately 1.4- to 3.9-fold enhancement of thermal stability compared with free cells. Furthermore, after seven batch cycles, the Cr(VI) reduction activity of free cells decreased to 48%, whereas immobilised cells still retained 81.1% of their original activity. In addition, the Cr(VI)-reduction rate of immobilised cells was higher relative to free cells, especially at higher Cr(VI) concentrations. These results supported the development of a novel, efficient biocatalysts for Cr(VI) detoxification using a combination of whole cell immobilisation, sol-gel chemistry, and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarangi, A. and C. Krishnan (2008) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour. Technol. 99: 4130–4137.

    Article  CAS  Google Scholar 

  2. Mclean, J. and T. J. Beveridge (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67: 1076–1084.

    Article  CAS  Google Scholar 

  3. Cefalu, W. T. and B. H. Frank (2004) Role of chromium in human health and in diabetes. Diabetes Care 27: 2741–2751.

    Article  CAS  Google Scholar 

  4. Cheung, K. H., H. Y. Lai, and J. D. Gu (2006) Membrane-associated hexavalent chromium reductase of Bacillusmegaterium TKW3 with induced expression. J. Microbiol. Biotechnol. 16: 855–862.

    CAS  Google Scholar 

  5. Opperman, D. J., L. A. Piater, and E. Van Heerden (2008) A novel chromate reductase from Thermusscotoductus SA-01 related to old yellow enzyme. J. Bacteriol. 190: 3076–3082.

    Article  CAS  Google Scholar 

  6. Focardi, S., M. Pepi, G. Landi, S. Gasperini, M. Ruta, P. Biasio, and S. E. Focardi (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Inter. Biodeter. Biodegrad. 66: 63–70.

    Article  CAS  Google Scholar 

  7. Sau, G. B., S. Chatterjee, and S. K. Mukherjee (2010) Chromate reduction by cell-free extract of Bacillusfirmus KUCr1. Pol. J. Microbiol. 59: 185–190.

    CAS  Google Scholar 

  8. He, M., X. Li, H. Liu, S. J. Miller, G. Wang, and C. Rensing (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillusfusiformis ZC1. J. Hazard. Mater. 185: 682–688.

    Article  CAS  Google Scholar 

  9. Ozturk, S., B. Aslim, and Z. Suludere (2009) Evaluation of chromium( VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour. Technol. 100: 5588–5593.

    Article  CAS  Google Scholar 

  10. Xu, L. X., M. Luo, C. Jiang, X. Wei, P. Kong, X. Liang, J. Zhao, L. Yang, and H. Liu (2012) In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacterphragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl. Biochem. Biotech. 166: 933–941.

    Article  CAS  Google Scholar 

  11. Camargo, F. A., B. C. Okeke, F. M. Bento, and W. T. Frankenberger (2003) In vitro reduction of hexavalent chromium by a cell free extract of Bacillus sp., ES 29 stimulated by Cu2+. Appl. Environ. Microbiol. 62: 569–573.

    CAS  Google Scholar 

  12. Zahoor, A. and A. Rehman (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci. 21: 814–820.

    Article  Google Scholar 

  13. Martorell, M. M., P. M. Fernández, J. I. Fariña, and L. C. Figueroa (2012) Cr(VI) reduction by cell-free extracts of Pichiajadinii and Pichiaanomala isolated from textile-dye factory effluents. Inter. Biodeter. Biodegrad. 71: 80–85.

    Article  CAS  Google Scholar 

  14. Dey, S. and A. K. Paul (2012) Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. J. Hazard. Mater. 213–214: 200–206.

    Article  Google Scholar 

  15. Kathiravan, M. N., R. K. Rani, R. Karthick, and K. Muthukumar (2010) Mass transfer studies on the reduction of Cr(VI) using calcium alginate immobilized Bacillus sp. in packed bed reactor. Bioresour. Technol. 101: 853–858.

    Article  CAS  Google Scholar 

  16. Pang, Y., G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, M. Wu, Z. Li, and C. Liu (2011) Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour. Technol. 102: 10733–10736.

    Article  CAS  Google Scholar 

  17. Shih, I., L. Chen, and J. Wu (2010) Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohyd. Polym. 82: 111–117.

    Article  CAS  Google Scholar 

  18. Sreenivasulu, C., M. Megharaj, K. Venkateswarlu, and R. Naidu (2012) Degradation of p nitrophenol by immobilized cells of Bacillus sp. isolated from soil. Inter. Biodeter. Biodegrad. 68: 24–27.

    Article  CAS  Google Scholar 

  19. Samuel, J., M. Pulimi, M. L. Paul, A. Maurya, N. Chandrasekaran, and A. Mukherjee (2013) Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Bioresour. Technol. 128: 423–430.

    Article  CAS  Google Scholar 

  20. Chen, J. and Y. Lin (2007) Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate-silicate solgel beads. Proc. Biochem. 42: 934–942.

    Article  CAS  Google Scholar 

  21. Vikartovska, A., M. Bucko, D. Mislovicova, V. Patoprsty, I. Lacik, and P. Gemeiner (2007) Improvement of the stability of glucose oxidase via encapsulation in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules. Enz. Microb. Technol. 41: 748–755.

    Article  CAS  Google Scholar 

  22. Wang, X., Z. Gai, B. Yu, J. Feng, C. Xu, Y. Yuan, Z. Lin, and P. Xu (2007) Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl. Environ. Microbiol. 73: 6421–6428.

    Article  CAS  Google Scholar 

  23. Gangadharan, D., K. M. Nampoothiri, S. Sivaramakrishnan, and A. Pandey (2009) Immobilized bacterial α-amylase for effective hydrolysis of raw and soluble starch. Food Res. Inter. 42: 436–442.

    Article  CAS  Google Scholar 

  24. Ortega, N., M. Perez-Mateos, M. C. Pilar, and M. D. Busto (2009) Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J. Agric. Food Chem. 57: 109–115.

    Article  CAS  Google Scholar 

  25. Lim, S. Y., K. Kim, D. Kim, and C. Park (2009) Silica-coated alginate beads for in vitro protein synthesis via transcription/translation machinery encapsulation. J. Biotechnol. 143: 183–189.

    Article  CAS  Google Scholar 

  26. Deng, H., X. Li, Q. Peng, X. Wang, J. Chen, and Y. Li (2005) Monodisperse magnetic single crystal ferrite microspheres. Angew Chem. Int. Ed. 44: 2782–2785.

    Article  CAS  Google Scholar 

  27. Ibrahim, A. S., M. A. El-Tayeb, Y. B. Elbadawi, A. A. Al-Salamah, and G. Antranikian (2012) Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by cupper dependent membrane-associated Cr (VI) reductases. Extremoph. 16: 659–668.

    Article  CAS  Google Scholar 

  28. Ibrahim, A. S., M. A. El-Tayeb, Y. B. Elbadawi, and A. A. Al- Salamah (2011) Isolation and characterization of novel potent Cr (VI) reducing alkaliphilic Amphibacillus sp. strain KSUCr3 from hypersaline soda lakes. Electronic J. Biotechnnol. 14(4): 1–14.

    Google Scholar 

  29. Woodward, J. (1988) Methods of immobilization of microbial cells. J. Microb. Methods 8: 91–102.

    Article  CAS  Google Scholar 

  30. Vujcić, Z., Z. Miloradovic, A. Milovanovic, and N. Bozic (2011) Cell wall invertase immobilisation within gelatin gel. Food Chem. 126: 236–240.

    Article  Google Scholar 

  31. Pal, A., S. Dutta, and A. K. Paul (2005) Reduction of hexavalent chromium by cell free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. 51: 327–330.

    Article  CAS  Google Scholar 

  32. Bartlett, R. J. and B. R. James (1996) Chromium. pp: 683–701. In: Sparks, D. L. (eds.), Methods of soil Analysis. SSSA, Madison, WI.

    Google Scholar 

  33. Gong, J., S. Li, D. Zhang, X. Zhang, C. Liu, and Z. Tong (2010) High quality self-assembly magnetite (Fe3O4) chain-like coreshell nanowires with luminescence synthesized by a facile onepothydrothermal process. Chem. Commun. 46: 3514–3516.

    Article  CAS  Google Scholar 

  34. Guo, X., Y. Deng, D. Gu, R. Che, and D. Zhao (2009) Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites. J. Mater. Chem. 19: 6706–6712.

    Article  CAS  Google Scholar 

  35. Lee, K. Y. and D. J. Mooney (2012) Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37: 106–126.

    Article  CAS  Google Scholar 

  36. Elangovan, R., L. Philip, and K. Chandraraj (2010) Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl. Biochem. Biotechnol. 160: 81–97.

    Article  CAS  Google Scholar 

  37. Tapingkae, W., K. L. Parkin, S. Tanasupawat, J. Kruenate, S. Benjakul, and W. Visessanguan (2010) Whole cell immobilisation of Natrinemagari BCC 24369 for histamine degradation. Food Chem. 120: 842–849.

    Article  CAS  Google Scholar 

  38. Cheirsilp, B., B. Jeamjounkhaw, and A. H. Kittikun (2009) Optimizing an alginate immobilized lipase for monoacylglycerol production by the glycerolysis reaction. J. Mol. Catal. B: Enz. 59: 206–211.

    Article  CAS  Google Scholar 

  39. Robatjazi, S. M., S. A. Shojaosadati, R. Khalilzadeh, E. V. Farahani, and N. Balochi (2012) Immobilization of magnetic modified Flavobacterium ATCC 27551 using magnetic field and evaluation of the enzyme stability of immobilized bacteria. Bioresour. Technol. 104: 6–11.

    Article  CAS  Google Scholar 

  40. Zhang, W. (2003) Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5: 323–332.

    Article  CAS  Google Scholar 

  41. Kanel, S. R., B. Manning, L. Charlet, and H. Choi (2003) Removal of Arsenic(III) from Groundwater by nanoscale zerovalent iron. Environ. Sci. Technol. 39: 1291–1298.

    Article  Google Scholar 

  42. Ponder, S. M., J. G. Darab, and T. E. Mallouk (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zero-valent iron. Environ. Sci. Technol. 34: 2564–2569.

    Article  CAS  Google Scholar 

  43. Ping, W., F. Xuerong, C. Li, W. Qiang, and Z. Aihui (2008) Decolorization of reactive dyes by laccase immobilized in alginate/gelatinblent with PEG. J. Environ. Sci. 20: 1519–1522.

    Article  Google Scholar 

  44. Zhou, Z., G. Li, and Y. Li (2010) Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate-chitosan beads. Inter. J. Biolog. Macromol. 47: 21–26.

    Article  CAS  Google Scholar 

  45. Coradin, T., N. Nassif, and J. Livage (2003) Silica-alginate composites for microencapsulation. J. Appl. Microbiol. Biotechnol. 61: 429–434.

    CAS  Google Scholar 

  46. Ichiura, H., T. Konishi, and M. Morikawa (2009) Alginate film prepared on polyethylene nonwoven sheet and its function for ellagic acid release in response to sodium ions. J. Mater. Sci. 44: 992–997.

    Article  CAS  Google Scholar 

  47. Myneni, S. B., S. J. Traina, G. A. Waychunas, and T. J. Logan (1998) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Osmochim. Acta 62: 3499–3514.

    Article  CAS  Google Scholar 

  48. Zhu, S., D. Zhang, Z. Chenb, and Y. Zhang (2009) Controlled synthesis of core/shell magnetic iron oxide/carbon systems via a self-template method. J. Mater. Chem. 19: 7710–7715.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelnasser S. S. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, A.S.S., Al-Salamah, A.A., El-Toni, A.M. et al. Detoxification of hexavalent chromate by Amphibacillus sp. KSUCr3 cells immobilised in silica-coated magnetic alginate beads. Biotechnol Bioproc E 18, 1238–1249 (2013). https://doi.org/10.1007/s12257-013-0373-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0373-6

Keywords

Navigation