Skip to main content
Log in

Gender-dependent expression of pancreatic proteins in streptozotocin-induced diabetic rats

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To elucidate gender-dependent protein regulation and molecular abnormalities in streptozotocin (STZ)-induced diabetes, we compared differentially expressed pancreatic proteins between male and female diabetic rats and their healthy controls using a 2-DE-based proteomic approach. In animal experiments, we found that females exposed to STZ displayed greater susceptibility towards diabetes development due to lower insulin secretion and severe β-cell damage. It was also accompanied with more impaired regulation of sex hormones, lower glucose tolerance, and higher blood glucose levels compared to male diabetic rats. Among 748 detected protein spots ranging in mass from 6 to 240 kDa between pH 3 and 10, a total of 42 proteins showed significant sexually-dimorphic regulation patterns between male and female diabetic rats. Proteomic data revealed that male and female rats displayed prominent gender-dimorphic differential regulation of pancreatic proteins involved in glycolysis, the citric acid cycle, amino acid synthesis, lipid metabolism, insulin biosynthesis, β-cell regeneration, cell signaling, as well as antioxidative and cellular stress defense. In conclusion, the current proteomic study revealed that severely impaired protein regulation in the pancreas, at least in part, is responsible for increased susceptibility of female rats to STZ-induced diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szalat, A. and I. Raz (2008) Gender-specific care of diabetes mellitus: Particular considerations in the management of diabetic women. Diabetes Obes. Metab. 10: 1135–1156.

    Google Scholar 

  2. King, H., R. E. Aubert, and W. H. Herman (1998) Global burden of diabetes 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care 21: 1414–1431.

    Article  CAS  Google Scholar 

  3. Macedo, C. S., S. M. Capelletti, M. C. S. Mercadante, C. R. Padovani, and C. T. Spadella (2002) Role of metabolic control on diabetic nephropathy. Acta Cir. Bras. 17: 370–376.

    Article  Google Scholar 

  4. Wandell, P. E. and A. C Carlsson (2013) Time trends and gender differences in incidence and prevalence of type 1 diabetes in Sweden. Curr. Diabetes. Rev. 9: 342–349.

    Article  Google Scholar 

  5. Wells, C. C., S. Riazi, R. W. Mankhey, F. Bhatti, http://0-www.sciencedirect.com.precise.petronas.com.my/science/article/pii/S155085790580052X-aff1 C. Ecelbarger, and C. Maric (2005) Diabetic nephropathy is associated with decreased circulating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend. Med. 2: 227–237.

    Article  Google Scholar 

  6. Le May, C., K. Chu, M. Hu, C. S. Ortega, E. R. Simpson, K. S. Korach, M. J. Tsai, and F. Mauvais-Jarvis (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl. Acad. Sci. USA. 103: 9232–9237.

    Article  Google Scholar 

  7. Vital, P., E. Larrieta, and M. Hiriart (2006) Sexual dimorphism in insulin sensitivity and susceptibility to develop diabetes in rats. J. Endocrinol. 190: 425–432.

    Article  CAS  Google Scholar 

  8. Kim, S. W., H. J. Hwang, H. M. Kim, M. C. Lee, M. Shik Lee, J. W. Choi, and J. W. Yun (2006) Effect of fungal polysaccharides on the modulation of plasma proteins in streptozotocin-induced diabetic rats. Proteomics. 6: 5291–5302.

    Article  CAS  Google Scholar 

  9. Kim, S. W., H. J. Hwang, E. J. Cho, J. Y. Oh, Y. M. Baek, J. W. Choi, and J. W. Yun (2006) Time-dependent plasma protein changes in streptozotocin-induced diabetic rats before and after fungal polysaccharide treatments. J. Proteome Res. 5: 2966–2976.

    Article  CAS  Google Scholar 

  10. Kim, S. W., H. J. Hwang, Y. M. Baek, S. H. Lee, H. S. Hwang, and J. W. Yun (2008) Proteomic and transcriptomic analysis for streptozotocin-induced diabetic rat pancreas in response to fungal polysaccharide treatments. Proteomics. 8: 2344–2361.

    Article  CAS  Google Scholar 

  11. Ahmed, M. (2010) Proteomics and islet research. Adv. Exp. Med. Biol. 654: 363–390.

    Article  CAS  Google Scholar 

  12. Sparre, T., M. R. Larsen, P. E. Heding, A. E. Karlsen, O. N. Jensen, and F. Pociot (2005) Unraveling the pathogenesis of type 1 diabetes with proteomics: Present and future directions. Mol. Cell Proteomics. 4: 441–457.

    Article  CAS  Google Scholar 

  13. Andersen, H. U., S. J. Fey, P. M. Larsen, A. Nawrocki, K. R. Hej naes, T. Mandrup-Poulsen, and J. Nerup (1997) Interleukin-1beta induced changes in the protein expression of rat islets: A computerized database. Electrophoresis. 18: 2091–2103.

    Article  CAS  Google Scholar 

  14. Christensen, U. B., P. M. Larsen, S. J. Fey, H. U. Andersen, A. Nawrocki, T. Sparre, T. Mandrup-Poulsen, and J. Nerup (2000) Islet protein expression changes during diabetes development in islet syngrafts in BB-DP rats and during rejection of BB-DP islet allografts. Autoimmunity. 32: 1–15.

    Article  CAS  Google Scholar 

  15. Larsen, P. M., S. J. Fey, M. R. Larsen, A. Nawrocki, H. U. Andersen, H. Kahler, C. Heilmann, M. C. Voss, P. Roepstorff, F. Pociot, A. E. Karlsen, and J. Nerup (2001) Proteome analysis of interleukin-1 beta-induced changes in protein expression in rat islets of Langerhans. Diabetes. 50: 105610–105663.

    Google Scholar 

  16. Sparre, T., U. B. Christensen, P. Mose Larsen, S. J. Fey, K. Wrzesinski, P. Roepstorff, T. Mandrup-Poulsen, F. Pociot, A. E. Karlsen, and J. Nerup (2002) IL-1beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis. Diabetol. 45: 1550–1561.

    Article  CAS  Google Scholar 

  17. Xie, X., S. Li, S. Liu, Y. Lu, P. Shen, and J. Ji (2008) Proteomic analysis of mouse islets after multiple low-dose streptozotocin injection. Biochim. Biophys. Acta 1784: 276–284.

    Article  CAS  Google Scholar 

  18. Zhi, W., S. Purohit, C. Carey, M. Wang, and J. X. She (2010) Proteomic technologiesfor the discovery of type 1 diabetes biomarkers. J. Diabetes Sci. Technol. 4: 993–1002.

    Google Scholar 

  19. Jiang, Y. L., Y. Ning, X. L. Ma, Y. Y. Liu, Y. Wang, Z. Zhang, C. X. Shan, Y. D. Xu, L. M. Yin, and Y. Q. Yang (2011) Alteration of the proteome profile of the pancreas in diabetic rats induced by streptozotocin. Int. J. Mol. Med. 28: 153–160.

    CAS  Google Scholar 

  20. Yang, M., W. Liu, C. Y. Wang, T. Liu, F. Zhou, J. Tao, Y. Wang, and M. T. Li (2006) Proteomic analysis of differential protein expression in early process of pancreatic regeneration in pancreatectomized rats. Acta Pharmacol. Sin. 27: 568–578.

    Article  CAS  Google Scholar 

  21. Resjo, S., K. Berger, M. Fex, and O. Hansson (2008) Proteomic studies in animal models of diabetes. Proteomics Clin. Appl. 2: 654–669.

    Article  Google Scholar 

  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  23. Choi, J. W., X. Wang, J. I. Joo, D. H. Kim, T. S. Oh, D. K. Choi, and J. W. Yun (2010) Plasma proteome analysis in diet-induced obesity-prone and obesity-resistant rats. Proteomics. 10: 4386–4400.

    Article  CAS  Google Scholar 

  24. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850–858.

    Article  CAS  Google Scholar 

  25. Rodriguez-Cuenca, S., E. Pujol, R. Justo, M. Frontera, J. Oliver, M. Gianotti, and P. Roca (2002) Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J. Biol. Chem. 277: 42958–42963.

    Article  CAS  Google Scholar 

  26. Justo, R., J. Boada, M. Frontera, J. Oliver, J. Bermudez, and M. Gianotti (2005) Gender dimorphism in rat liver mitochondrial oxidative metabolism and biogenesis. Am. J. Physiol. Cell Physiol. 289: 372–378.

    Article  Google Scholar 

  27. Zhang, D., J. Christianson, Z. X. Liu, L. Tian, C. S. Choi, S. Neschen, J. Dong, P. A. Wood, and G. I. Shulman (2010) Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl CoA dehydrogenase deficiency. Cell. Metab. 11: 402–411.

    Article  CAS  Google Scholar 

  28. Ashmarina, L. I., N. Rusnak, H. M. Miziorko, and G. A. Mitchell (1994) 3-Hydroxy-3-methylglutaryl-CoA lyase is present in mouse and human liver peroxisomes. J. Biol. Chem. 269: 31929–31932.

    CAS  Google Scholar 

  29. Sowers, M., C. Gonzalez Villalpando, M. P Stern, C. Fox, and B. D. Mitchell (1995) Relationships between physical activity, insulin levels and lipids in non-diabetic low income residents of Mexico City: The Mexico city diabetes study. Arch. Med. Res. 26: 133–140.

    CAS  Google Scholar 

  30. Adrogue, H. J., H. Wilson, A. E. III. Boyd, W. N. Suki, and knoyan (1982) Plasma acid base patterns in diabetic ketoacidosis. N. Engl. J. Med. 307: 1603–1610.

    Article  CAS  Google Scholar 

  31. Wang, Z., L. Jiang, C. Huang, Z. Li, L. Chen, L. Gou, P. Chen, A. Tong, M. Tang, F. Gao, J. Shen, Y. Zhang, J. Bai, M. Zhou, D. Miao, and Q. Chen (2008) Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol. Cell Proteomics. 7: 1639–1650.

    Article  CAS  Google Scholar 

  32. Qiu, Y., T. Mao, Y. Zhang, M. Shao, J. You, Q. Ding, Y. Chen, D. Wu, D. Xie, X. Lin, X. Gao, R. J. Kaufman, W. Li, and Y. Liu (2010) A crucial role for RACK1 in the regulation of glucosestimulated IRE1alpha activation in pancreatic beta cells. Sci. Signal. 3: ra7.

    Article  Google Scholar 

  33. Lipson, K. L., S. G. Fonseca, S. Ishigaki, L. X. Nguyen, E. Foss, R. Bortell, A. A. Rossini, and F. Urano (2006) Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4: 245–254.

    Article  CAS  Google Scholar 

  34. Anastasi, E., E. Ponte, R. Gradini, A. Bulotta, P. Sale, C. Tiberti, H. Okamoto, F. Dotta, and U. Di Mario (1999) Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes. Eur. J. Endocrinol. 141: 644–652.

    Article  CAS  Google Scholar 

  35. De Reggi, M. and B. Gharib (2001) Protein-X, pancreatic stone-, pancreatic thread-, reg-protein, P19, lithostathine, and now what? Characterization, structural analysis and putative function(s) of the major nonenzymatic protein of pancreatic secretions. Curr. Protein Pept. Sci. 2: 19–42.

    Article  Google Scholar 

  36. Okamoto, H. (1999) The Reg gene family and Reg proteins: With special attention to the regeneration of pancreatic beta-cells. J. Hepatobiliary Pancreat. Surg. 6: 254–262.

    Article  CAS  Google Scholar 

  37. Ohno, T., C. Ishii, N. Kato, Y. Ito, M. Shimizu, S. Tomono, K. Murata, and S. Kawazu (1995) Increased expression of a regenerating (reg) gene protein in neonatal rat pancreas treated with streptozotocin. Endocr. J. 42: 649–653.

    Article  CAS  Google Scholar 

  38. Christofilis, M. A., J. Carrere, C. Atlan-Gepner, C. Zevaco-Mattei, C. Thivolet, N. Baeza, C. Figarella, and B. Vialettes (1999) Serum reg protein level is not related to the beta cell destruction/regeneration process during early phases of diabetogenesis in type I diabetes. Eur. J. Endocrinol. 141: 368–373.

    Article  CAS  Google Scholar 

  39. Qiu, L., E. O. List, and J. J. Kopchick (2005) Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol. Cell Proteomics. 4: 1311–1318.

    Article  CAS  Google Scholar 

  40. Watanabe, T., Y. Yonemura, H. Yonekura, Y. Suzuki, H. Miyashita, K. Sugiyama, S. Moriizumi, M. Unno, O. Tanaka, and H. Kondo (1994) Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein. Proc. Natl. Acad. Sci. U S A. 91: 3589–3592.

    Article  CAS  Google Scholar 

  41. Kakkar, R., S. V. Mantha, J. Radhi, K. Prasad, and J. Kalra (1998) Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin. Sci. 94: 623–632.

    CAS  Google Scholar 

  42. Kaneto, H., N. Katakami, M. Matsuhisa, and T. A. Matsuoka (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010: 453892.

    Article  Google Scholar 

  43. Strehlow, K., S. Rotter, S. Wassmann, O. Adam, C. Grohe, K. Laufs, M. Bohm, and G. Nickenig (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res. 93: 170–177.

    Article  CAS  Google Scholar 

  44. Halliwell, B. (1994) Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet. 344: 721–724.

    Article  CAS  Google Scholar 

  45. Liochev, S. I. and I. Fridovich (1994) The role of O2. — in the production of HO.:In vitro and in vivo. Free Radic. Biol. Med. 16: 29–33.

    Article  CAS  Google Scholar 

  46. Lenzen, S., J. Drinkgern, and M. Tiedge (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 20: 463–466.

    Article  CAS  Google Scholar 

  47. Ketterer, B. (1998) Glutathione S-transferases and prevention of cellular free radical damage. Free Radic. Res. 28: 647–658.

    Article  CAS  Google Scholar 

  48. Kim, S. K., K. J. Woodcroft, and R. F. Novak (2003) Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J. Pharmacol. Exp. Ther. 305: 353–361.

    Article  CAS  Google Scholar 

  49. Fatma, N., P. Singh, B. Chhunchha., E. Kubo, T. Shinohara, B. Bhargavan, and D. P. Singh (2011) Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosis. Am. J. Physiol. Cell Physiol. 301: 954–967.

    Article  Google Scholar 

  50. Nair, S., D. Yadav, and C. S. Pitchumoni (2000) Association of diabetic ketoacidosis and acute pancreatitis: Observations in 100 consecutive episodes of DKA. Am. J. Gastroenterol. 95: 2795–2800.

    Article  CAS  Google Scholar 

  51. Hardt, P. D., A. Killinger, J. Nalop, H. Schnell-Kretschmer, T. Zekorn, and H. U. Klor (2002) Chronic pancreatitis and diabetes mellitus. A retrospective analysis of 156 ERCP investigations in patients with insulin-dependent and non-insulin-dependent diabetes mellitus. Pancreatol. 2: 30–33.

    Article  Google Scholar 

  52. Vantyghem, M. C., S. Haye, M. Balduyck, C. Hober, P. M. Degand, and J. Lefebvre (1999) Changes in serum amylase, lipase and leukocyte elastase during diabetic ketoacidosis and poorly controlled diabetes. Acta Diabetol. 36: 39–44.

    Article  CAS  Google Scholar 

  53. Jennens, M. L. and M. E. Lowe (1995) Rat GP-3 is a pancreatic lipase with kinetic properties that differ from colipase-dependent pancreatic lipase. J. Lipid Res. 36: 2374–2382.

    CAS  Google Scholar 

  54. Lowe, M. E., M. H. Kaplan, L. Jackson-Grusby, D. D’Agostino, and M. J. Grusby (1998) Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J. Biol. Chem. 273: 31215–31221.

    Article  CAS  Google Scholar 

  55. Rippe, C., K. Berger, J. Mei, M. E. Lowe, and C. Erlanson-Albertsson (2003) Effect of long-term high-fat feeding on the expression of pancreatic lipases and adipose tissue uncoupling proteins in mice. Pancreas. 26: e36–42.

    Article  Google Scholar 

  56. Rosendahl, J., H. Witt, R. Szmola, E. Bhatia, B. Ozsvari, O. Landt, H. U. Schulz, T. M. Gress, R. Pfutzer, M. Lohr, P. Kovacs, M. Bluher, M. Stumvoll, G. Choudhuri, P. Hegyi, R. H. te Morsche, J. P. Drenth, K. Truninger, M. Macek, G. Puhl, U. Witt, H. Schmidt, C. Buning, J. Ockenga, A. Kage, D. A. Groneberg, R. Nickel, T. Berg, B. Wiedenmann, H. Bodeker, V. Keim, J. Mossner, N. Teich, and M. Sahin-Toth (2008) Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat. Genet. 40: 78–82.

    Article  CAS  Google Scholar 

  57. Szabo, A. and M. Sahin-Toth (2012) Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J. Biol. Chem. 287: 20701–20710.

    Article  CAS  Google Scholar 

  58. Rebours, V., P. Levy, and P. Ruszniewski (2012) An overview of hereditary pancreatitis. Dig. Liver Dis. 44: 8–15.

    Article  CAS  Google Scholar 

  59. Saluja, A. K., L. Bhagat, H. S. Lee, M. Bhatia, J. L. Frossard, and M. L. Steer (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am. J. Physiol. 276: 835–842.

    Google Scholar 

  60. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–579.

    Article  CAS  Google Scholar 

  61. Quintana, F. J., A. Rotem, P. Carmi, and I. R Cohen (2000) Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in non-obese diabetic mice: Modulation of spontaneous 60-kDa heat shock protein autoimmunity. J. Immunol. 165: 6148–6155.

    CAS  Google Scholar 

  62. Tessari, P., L. Puricelli, E. Iori, G. Arrigoni, M. Vedovato, P. James, A. Coracina, and R. Millioni (2007) Altered chaperone and protein turnover regulators expression in cultured skin fibroblasts from type 1 diabetes mellitus with nephropathy. J. Proteome Res. 6: 976–986.

    Article  CAS  Google Scholar 

  63. Pullen, T. J., A. M. Khan, G. Barton, S. A. Butcher, G. Sun, and G. A. Rutter (2010) Identification of genes selectively disallowed in the pancreatic islet. Islets. 2: 89–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aseer, K.R., Yun, J.W. Gender-dependent expression of pancreatic proteins in streptozotocin-induced diabetic rats. Biotechnol Bioproc E 18, 1122–1134 (2013). https://doi.org/10.1007/s12257-013-0324-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0324-2

Keywords

Navigation