Skip to main content
Log in

Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis

  • Research Paper
  • Enzyme Biotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A novel and simple method was developed for the preparation of magnetic Fe3O4 nanoparticles by chemical co-precipitation method and subsequent coating with 3-aminopropyltrimethoxysilane (APTMS) through silanization process. Magnetic Fe3O4-chitosan particles were prepared by the suspension cross-linking and covalent technique to be used in the application of magnetic carrier technology. The synthesized immobilization supports were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Using glutaraldehyde as the coupling agent, the lipase from R. oryzae was successfully immobilized onto the functionalized magnetic Fe3O4-chitosan beads. The results showed that 86.60% of R. oryzae lipase was bound on the synthesized immobilization support. This immobilized lipase was successfully used for the esterification of phenolic acid which resulted in esterification of phenolic acid in isooctane solvent reaction system for 8 consecutive cycles (totally 384 h), 72.6% of its initial activity was retained, indicating a high stability in pharmaceutical and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gandhi, N. N. (1997) Applications of lipase. J. Am. Oil. Chem. Soc. 74: 621–634.

    Article  CAS  Google Scholar 

  2. Fernandez-Lafuente, R. (2010) Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal. B-Enzym. 62: 197–212.

    Article  CAS  Google Scholar 

  3. Pandey, A., S. Benjamin, C. R. Soccol, P. N. Krieger, and V. T. Soccol (1999) The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119–131.

    CAS  Google Scholar 

  4. Chang, S. W., J. F. Shaw, K. H. Yang, S. F. Chang, and C. J. Shieh (2008) Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly (gamma-glutamic acid) by RSM. Bioresour. Technol. 99: 2800–2805.

    Article  CAS  Google Scholar 

  5. Wu, Y., Y. J. Wang, G. S. Luo, and Y. Y. Dai (2008) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol. 100: 3459–3464.

    Article  Google Scholar 

  6. De-Sheng, J., Y. L. Sheng, J. Huang, X. Hai-Yan, and Z. Ju-Ying (2005) Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 25: 15–23.

    Article  Google Scholar 

  7. Tang, Z. X., J. Q. Qian, and L. E. Shi (2006) Characterizations of immobilized neutral proteinase on chitosan nano-particles. Proc. Biochem. 41: 1193–1197.

    Article  CAS  Google Scholar 

  8. Li, G. Y., Z. D. Zhou, Y. J. Li, K. L. Huang, and M. Zhong (2010) Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae. J. Magn. Mater. 322: 3862–3868.

    Article  CAS  Google Scholar 

  9. Liu, Y., S. Jia, J. Ran, and S. Wu (2010) Effects of static magnetic field on activity and stability of immobilized α-amylase in chitosan bead. Catal. Commun. 11: 364–367.

    Article  CAS  Google Scholar 

  10. Shakeel, A. A. and Q. Husain (2012) Potential application of enzymes immobilized on/in nano material: A review. Biotechnol. Adv. 30: 512–523.

    Article  Google Scholar 

  11. Zhang, S. and S. Gao (2010) Immobilization of β galactosidase onto magnetic beads. Appl. Biochem. Biotechnol. 160: 1386–1393.

    Article  CAS  Google Scholar 

  12. Chiou, S. and H. W. T. Wu (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomat. 25: 197–204.

    Article  CAS  Google Scholar 

  13. Moore, D. and R. Reynolds (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. pp. 270–276. Oxford University Press, NY, USA.

    Google Scholar 

  14. Nelson, L. A., T. A. Foglia, and W. N. Marmer (1996) Lipasecatalyzed production of biodiesel. J. Am. Oil Chem. Soc. 73: 1191–1195.

    Article  CAS  Google Scholar 

  15. Reetz, M. T., A. Zonta, V. Vijayakrishnan, and K. Schimossek (1998) Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: Magnetic separation of heterogeneous biocatalysts. J. Mol. Catal. A: Chemical. 134: 251–258.

    Article  CAS  Google Scholar 

  16. Compton, D. L. (2005) Sunscreens based on vegetable oil. Lipid Technol. 17: 276–279.

    CAS  Google Scholar 

  17. Saija, A., A. Tomaino, R. L. Cascio, D. Trombetta, A. Proteggente, A. D. Pasquale, N. Uccella, and F. Bonina (1999) Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric. 79: 476–480.

    Article  CAS  Google Scholar 

  18. Murakami, A., Y. Nakamura, K. Koichi, D. Koshimizu, K. Takahashi, K. Matsumoto, K. Hagihara, H. Taniguchi, E. Nomura, A. Hosoda, T. Tsuno, H. W. Maruta, K. Kim, K. Kawabata, and H. Ohigashi (2002) A hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: Comparison with ferulic acid. Cancer Lett. 180: 121–129.

    Article  CAS  Google Scholar 

  19. Tsuchiyama. M., T. Sakamoto, T. Fujita, S. Murata, and S. Kawasaki (2006) Esterification of ferulic acid with polyols using a ferulic acid esterase from Aspergillus niger. Biochim. Biophys. Acta Gen. Subj. 1760: 1071–1079.

    Article  CAS  Google Scholar 

  20. Chalas, J., C. Claise, M. Edeas, C. Messaoudi, L. Vergnes, A. Abella, and A. Lindenbaum (2001) Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. Biomed. Pharmacother. 55: 54–60.

    Article  CAS  Google Scholar 

  21. Dung, D. T. K., T. H. Hai, L. Phuc, H. B. Long, D. L. K. Vinh, and P. N. Truc (2009) Preparation and characterization of magnetic nanoparticles with chitosan coating. J. Phys. Conf. Ser. 187: 012036.

    Article  Google Scholar 

  22. Lee, D. H., C. H. Park, J. M. Yeo, and S. W. Kim (2006) Lipase immobilization on silica gel using a cross-linking method. J. Ind. Eng. Chem. 12: 777–782.

    CAS  Google Scholar 

  23. Guibal, E., M. Jansson-Charrier, I. Saucedo, and P. L. Cloirec (1995) Enhancement of metal ion sorption performances of chitosan: Effect of the structure on the diffusion properties. Langmuir. 11: 591–598.

    Article  CAS  Google Scholar 

  24. Winkler, U. K. and M. Stuckmann (1979) Glycogen, hyaluronidate and some other polysaccharides greatly enhance the formation of exocellular lipase by Serratia marcescens. J. Bacteriol. 138: 663–670.

    CAS  Google Scholar 

  25. Ye, P. Z., K. Xu, Z. G. Wang, J. Wu, H. T. Deng, and P. Seta (2005) Comparison of hydrolytic activities in aqueous and organic media for lipases immobilized on poly(acrylonitrile-comaleic acid) ultrafiltration hollow fiber membrane. J. Mol. Catal. B: Enz. 32: 115–121.

    Article  CAS  Google Scholar 

  26. Miletic, N., A. Volker, E. Katrin, and L. Katja (2010) Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol. Rapid Commun. 31: 71–74.

    Article  CAS  Google Scholar 

  27. Aravind, S., J. K. Stephen, I. Patrick, O. K. B. Jacobson, W. Jonathan, and J. D. Michel (1999) Comparison of techniques for enzyme immobilization on silicon supports. Enz. Microb. Tech. 24: 26–34.

    Article  Google Scholar 

  28. Tang, T., H. Fan, S. Ai, R. Han, and Y. Qiu (2011) Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere. 83: 255–264.

    Article  Google Scholar 

  29. Denkbas, E. B., E. Kilicay, C. Birlikseven, and F. E. Ozturk (2002) Magnetic chitosan microspheres: Preparation and characterization. React. Funct. Polym. 50: 225–232.

    Article  CAS  Google Scholar 

  30. Lopez-Gallego, F., L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, and G. Dellamora-Ortiz (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J. Biotechnol. 119: 70–75.

    Article  CAS  Google Scholar 

  31. Bin, H., P. Jiang, Y. Hui-Lei, L. Jian-Wen, and X. Jian-He (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of diltiazem intermediate. Proc. Biochem. 44: 1019–1024.

    Article  Google Scholar 

  32. Kumar, A. and S. S. Kanwar (2011) Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresour. Technol. 102: 2162–2167.

    Article  CAS  Google Scholar 

  33. Demira, A. S., F. N. Talpura, S. B. Sopacia, G. -W. Kohring, and A. Celik (2011) Selective oxidation and reduction reactions with cofactor regeneration mediated by galactitol-, lactate- and formate dehydrogenases immobilized on magnetic nanoparticles. J. Biotechnol. 152: 176–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Kumar Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Jahan, F., Raghuwanshi, S. et al. Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis. Biotechnol Bioproc E 18, 787–795 (2013). https://doi.org/10.1007/s12257-012-0793-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0793-8

Keywords

Navigation