Skip to main content
Log in

Enhanced In Vitro Antimicrobial Activity of Polymyxin B–Coated Nanostructured Lipid Carrier Containing Dexamethasone Acetate

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The increase in ocular infections mainly by Pseudomonas aeruginosa is directly related to the emergence and widespread use of contact lenses; Polymyxin B has been used in therapy for treating this ophthalmic pathogen. Recently, nanostructured systems have been proposed to enhance antimicrobial activity of antibiotics.

Methods

In this study, a nanostructured lipid carrier (NLC) containing dexamethasone acetate (DEX-NLC) was developed, and its surface was modified by polymyxin B sulfate (DEX-NLC+PS) with the purpose of the antimicrobial activity enhancement against P. aeruginosa. DEX-NLC was obtained by high-pressure homogenization and coated with PS.

Results

The NLC Z-average was 244.73 ± 7.82 nm; the PI and ZP showed 0.226 ± 0.048 and 2.724 ± 0.458 mV, respectively. The formulation showed adequate stability and physicochemical characteristics. The developed nanosystem enhanced the PS antimicrobial activity 2- to 3-fold against Pseudomonas aeruginosa.

Conclusion

This result suggests that DEX-NLC+PS can offer a promising alternative against Gram-negative bacterial infections accompanied by inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lakhundi S, Siddiqui R, Khan NA. Pathogenesis of microbial keratitis. Microb Pathog. 2017;104:97–109. https://doi.org/10.1016/j.micpath.2016.12.013.

    Article  CAS  PubMed  Google Scholar 

  2. Cope JR, Collier SA, Nethercut H, Jones JM, Yates K, Yoder JS. Risk behaviors for contact lens-related eye infections among adults and adolescents - United States, 2016. MMWR Morb Mortal Wkly Rep. 2017;66(32):841–5. https://doi.org/10.15585/mmwr.mm6632a2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vidal-Rohr M, Wolffsohn JS, Davies LN, Cerviño A. Effect of contact lens surface properties on comfort, tear stability and ocular physiology. Cont Lens Anterior Eye. 2018;41(1):117–21. https://doi.org/10.1016/j.clae.2017.09.009.

    Article  PubMed  Google Scholar 

  4. Cope JR, Collier SA, Rao MM, Chalmers R, Mitchell GL, Richdale K, et al. Contact lens wearer demographics and risk behaviors for contact lens-related eye infections--United States, 2014. MMWR Morb Mortal Wkly Rep. 2015;64(32):865–70. https://doi.org/10.15585/mmwr.mm6432a2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shovlin JP, Argüeso P, Carnt N, Chalmers RL, Efron N, Fleiszig SM, et al. 3. Ocular surface health with contact lens wear. Cont Lens Anterior Eye. 2013;36(Suppl 1):S14–21. https://doi.org/10.1016/S1367-0484(13)60005-3.

    Article  PubMed  Google Scholar 

  6. Ong HS, Corbett MC. Corneal infections in the 21st century. Postgrad Med J. 2015;91(1080):565–71. https://doi.org/10.1136/postgradmedj-2015-133323.

    Article  PubMed  Google Scholar 

  7. Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 2017;17(1):212. https://doi.org/10.1186/s12886-017-0612-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leibowitz HM, Kupferman A, Stewart RH, Kimbrough RL. Evaluation of dexamethasone acetate as a topical ophthalmic formulation. Am J Ophthalmol. 1978;86(3):418–23. https://doi.org/10.1016/0002-9394(78)90249-0.

    Article  CAS  PubMed  Google Scholar 

  9. Vasoo S. Susceptibility testing for the polymyxins: two steps back, three steps forward? J Clin Microbiol. 2017;55(9):2573–82. https://doi.org/10.1128/JCM.00888-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8(6):711–24. https://doi.org/10.2217/fmb.13.39.

    Article  CAS  PubMed  Google Scholar 

  11. Srinivas P, Rivard K. Polymyxin resistance in gram-negative pathogens. Curr Infect Dis Rep. 2017;19(11):38. https://doi.org/10.1007/s11908-017-0596-3.

    Article  PubMed  Google Scholar 

  12. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369–78. https://doi.org/10.1016/j.jiph.2016.08.007.

    Article  PubMed  Google Scholar 

  13. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B: Biointerfaces. 2010;81(2):412–21. https://doi.org/10.1016/j.colsurfb.2010.07.029.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Mira E, Egea MA, Souto EB, Calpena AC, García ML. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology. 2011;22(4):045101. https://doi.org/10.1088/0957-4484/22/4/045101.

    Article  CAS  PubMed  Google Scholar 

  15. Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci. 2012;101(10):3833–44. https://doi.org/10.1002/jps.23251.

    Article  CAS  PubMed  Google Scholar 

  16. Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving oculardelivery of acyclovir. Drug Dev Ind Pharm. 2013;39(4):508–19. https://doi.org/10.3109/03639045.2012.665460.

    Article  CAS  PubMed  Google Scholar 

  17. Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm. 2016;109:224–35. https://doi.org/10.1016/j.ejpb.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  18. Liu D, Li J, Pan H, He F, Liu Z, Wu Q, et al. Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipidcarrier on the performance of ophthalmic delivery of curcumin. Sci Rep. 2016;6:28796. https://doi.org/10.1038/srep28796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particlestructure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. https://doi.org/10.1016/j.ejpb.2018.10.017.

    Article  CAS  PubMed  Google Scholar 

  20. Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, Du Plessis LH. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharm. 2017;526(1–2):244–53. https://doi.org/10.1016/j.ijpharm.2017.04.071.

    Article  CAS  PubMed  Google Scholar 

  21. Wang M, Jin Y, Yang Y, Zhao C, Yang H, Xu X, et al. In vivo biodistribution, anti-inflammatory, and hepatoprotective effects of liver targeting dexamethasone acetate loaded nanostructured lipid carrier system. Int J Nanomedicine. 2010;5:487–97. https://doi.org/10.2147/IJN.S10393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lourenço FR, Pinto TJA. Comparison of three experimental designs employed in gentamicin microbiological assay through agar diffusion. Braz J Pharm Sci. 2009;45(3). https://doi.org/10.1590/S1984-82502009000300022.

  23. The United States Pharmacopeia 41th ed. Rochville: United States Pharmacopoeial Convention; 2018.

  24. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75. https://doi.org/10.1038/nprot.2007.521.

    Article  CAS  PubMed  Google Scholar 

  25. Moussa SH, Tayel AA, Al-Hassan AA, Farouk A. Tetrazolium/formazan test as an efficient method to determine fungal chitosan antimicrobial activity. J Mycol. 2013;2013:753692, 7 pages. https://doi.org/10.1155/2013/753692.

    Article  Google Scholar 

  26. Compri JCZ, Felli VMA, Lourenço FR, Takatsuka T, Fotaki N, Löbenberg R, et al. Highly water-soluble orotic acid nanocrystals produced by high-energy milling. J Pharm Sci. 2018. https://doi.org/10.1016/j.xphs.2018.12.015.

  27. Tan G, Yu S, Li J, Pan W. Development and characterization of nanostructured lipid carriers based chitosan thersmosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol. 2017;103:941–7. https://doi.org/10.1016/j.ijbiomac.2017.05.132.

    Article  CAS  PubMed  Google Scholar 

  28. Ramesh G, Meisner OC, Philipp MT. Anti-inflammatory effects of dexamethasone and meloxicam on Borrelia burgdorferi-induced inflammation in neuronal cultures of dorsal root ganglia and myelinating cells of the peripheral nervous system. J Neuroinflammation. 2015;12:240. https://doi.org/10.1186/s12974-015-0461-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Short C, Keates RH, Donovan EF, Wyman M, Murdick PW. Ocular penetration studies. I. Topical administration of dexamethasone. Arch Ophthalmol. 1966;75(5):689–92.

    Article  CAS  PubMed  Google Scholar 

  30. Dinning WJ. Steroids and the eye--indications and complications. Postgrad Med J. 1976;52(612):634–8. https://doi.org/10.1136/pgmj.52.612.634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gall V, Runde M, Schuchmann HP. Extending applications of high-pressure homogenization by using simultaneous emulsification and mixing (SEM)—an overview. Processes. 2016;4(4):46. https://doi.org/10.3390/pr4040046.

    Article  CAS  Google Scholar 

  32. Xu X, Zhao C, Yang H, Jian Y, Zhang Z, Huang Y. Anti-inflammatory activity of injectable dexamethasone acetate-loaded nanostructured lipid carriers. Drug Deliv. 2011;18(7):485–92. https://doi.org/10.3109/10717544.2011.589087.

    Article  CAS  PubMed  Google Scholar 

  33. Dean AW, Glasgow BJ. Mass spectrometric identification of phospholipids in human tears and tear Lipocalin. Invest Ophthalmol Vis Sci. 2012;53(4):1773–82. https://doi.org/10.1167/iovs.11-9419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:604204. https://doi.org/10.1155/2012/604204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. International pharmacopoeia, 2014. 4th edition, Geneva, World Health Organization.

  36. Aldrich DS, Bach CM, Brown W, Chambers W, Fleitman J, Hunt D, Marques MRC, Mille Y, Mitra AK, Platzer SM, Tice T, Tin GW. Stimuli to the revision process: Ophthalmic preparations. v. 39, n. 5, 28 ago., 2013. \\usp-netapp2\share\SHARE\USPNF\PRINTQ\pager\xmlIn\NEP_20130828110441_S200824.xml

  37. Acar D, Molina-Martínez IT, Gómez-Ballesteros M, Guzmán-Navarro M, Benítez-Del-Castillo JM, Herrero-Vanrell R. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Cont Lens Anterior Eye. 2018;41(1):93–6. https://doi.org/10.1016/j.clae.2017.11.004.

    Article  PubMed  Google Scholar 

  38. Li X, Müller RH, Keck CM, Bou-Chacra NA. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept. Pharmazie. 2016;71(6):327–33. https://doi.org/10.1691/ph.2016.5190.

    Article  CAS  PubMed  Google Scholar 

  39. Yu Z, Qin W, Lin J, Fang S, Qiu J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int. 2015;2015:679109. https://doi.org/10.1155/2015/679109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Curutiu C, Grumezescu V, Chifiriuc MC, Huang K, Iordache F, Lin Y, et al. Nanostructured approaches for the targeted delivery of antibiotics in difficult infections. Curr Org Chem. 2017;21(1):45–52. https://doi.org/10.2174/1385272820666160510170450.

    Article  CAS  Google Scholar 

  41. Alalaiwe A, Wang PW, Lu PL, Chen YP, Fang JY, Yang SC. Synergistic anti-MRSA activity of cationic nanostructured lipid carriers in combination with oxacillin for cutaneous application. Front Microbiol. 2018;9:1493. https://doi.org/10.3389/fmicb.2018.01493.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Al-Qushawi A, Rassouli A, Atyabi F, Peighambari SM, Esfandyari-Manesh M, Shams GR, et al. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran J Pharm Res. 2016;15(4):663–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Romero GB, Keck CM, Müller RH, Bou-Chacra NA. Development of cationic nanocrystals for ocular delivery. Eur J Pharm Biopharm. 2016;107:215–22. https://doi.org/10.1016/j.ejpb.2016.07.005.

    Article  CAS  PubMed  Google Scholar 

  44. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13:288–303. https://doi.org/10.4103/1735-5362.235156.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felipe Rebello Lourenço or Nadia Bou-Chacra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, E.D., Ferreira, M.R.S., dos Santos Neto, E. et al. Enhanced In Vitro Antimicrobial Activity of Polymyxin B–Coated Nanostructured Lipid Carrier Containing Dexamethasone Acetate. J Pharm Innov 16, 125–135 (2021). https://doi.org/10.1007/s12247-020-09427-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09427-3

Keywords

Navigation