Skip to main content

Advertisement

Log in

BBD-Based Development of Itraconazole Loaded Nanostructured Lipid Carrier for Topical Delivery: In Vitro Evaluation and Antimicrobial Assessment

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Objectives

The present study was aimed to develop itraconazole (ITZL)-loaded NLC for the treatment of fungal infection.

Methods

The formulation was prepared and optimized by the hot homogenization method and Box-Behnken statistical design. The total lipid ratio (A), surfactant (B), and homogenization cycle (C) were selected as independent variables, and the effects of variables were evaluated on particle size (R1), entrapment efficiency (R2), and drug release in 12 h (R3).

Results

The optimized formulation ITZLNLCopt showed particle size (147.31 ± 1.43 nm) high entrapment efficiency (86.36 ± 0.83%) and drug release (77.23 ± 3.33 %). The formulation ITZLNLCopt converted to carbopol (1% w/v) based gel (ITZLNLCopt gel) and showed good consistency and spreadability. The formulation ITZLNLCopt gel showed higher drug release (88.43 ± 2.54 % up to 24 h) and flux (2.46 fold) than control gel. The zone of inhibition results showed 2.6 and 2.36 fold higher inhibition (P < 0.05) than control gel (ITZL gel) against Candida albicans and Aspergillus fumigatus.

Conclusions

It could be concluded that ITZLNLC gel as a potential alternative for the treatment of topical fungal infection after clinical study in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8

Similar content being viewed by others

References

  1. Vitorino C, Almeida J, Gonçalves LM, Almeida AJ, Sousa JJ, Pais AA. Co-ncapsulating nanostructured lipid carriers for transdermal application: from experimental design to the molecular detail. J Control Release. 2013;167(3):301–14.

    Article  CAS  Google Scholar 

  2. Rajinikanth PA, Chellian J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J of Nanaome. 2016;11:5067–77.

    Article  CAS  Google Scholar 

  3. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113:151–70.

    Article  CAS  Google Scholar 

  4. Jenning V, Schafer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000;66:115–26.

    Article  CAS  Google Scholar 

  5. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59:522–30.

    Article  Google Scholar 

  6. Sanna V, Caria G, Mariani A. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of econazole nitrate. Powder Technol. 2010;201:32–6.

    Article  CAS  Google Scholar 

  7. Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin Drug Del. 2012;9:429–41.

    Article  CAS  Google Scholar 

  8. Hasnain M, Imam SS. Aqil M., Ahad A, Sultana Y. Application of lipid blend-based nanoparticulate scaffold for oral delivery of antihypertensive drug: implication on process variables and in vivo absorption Assessment. J Pharm Innov 2018; 13(4): 341-352.

  9. Kasongo KW, Pardeike J, Muller RH, Walker RB. Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. J Pharm Sci. 2011;100:5185–96.

    Article  CAS  Google Scholar 

  10. Varshosaz J, Hassanzadeh F, Sadeghi H, Khadem M. Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. J Liposome Res. 2012;22:224–36.

    Article  CAS  Google Scholar 

  11. Kim JK, Park JS, Kim CK. Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release. Int J Pharm. 2010;383:209–15.

    Article  CAS  Google Scholar 

  12. Chen W, Gu B, Wang H, Pan J, Lu W, Hou H. Development and evaluation of novel itraconazole-loaded intravenous nanoparticles. Int J Pharm. 2008;362:133–40.

    Article  CAS  Google Scholar 

  13. Gajra B, Dalwadi C, Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (lipomer) using Box-Behnken design. Daru. 2015; 23(1):3.

  14. Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine. 2012;7:5475–89.

    Article  CAS  Google Scholar 

  15. Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plank H, et al. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm. 2011;419(1–2):329–38.

    Article  CAS  Google Scholar 

  16. Thakkar HP, Khunt A, Dhande RD, Patel AA. Formulation and evaluation of Itraconazole nanoemulsion for enhanced oral bioavailability. J Microencapsul. 2015;32(6):559–69.

    Article  CAS  Google Scholar 

  17. Lim WM, Rajinikanth PS, Mallikarjun C, Kang YB. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. Int J Nanomedicine. 2014;9:2117–26.

    Article  Google Scholar 

  18. Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AA. The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf B: Biointerfaces. 2011;84:117–30.

    Article  CAS  Google Scholar 

  19. Khan A, Imam SS, Aqil M, Ahad A, Sultana Y, Ali A, et al. Brain targeting of temozolomide via the intranasal route using lipid based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Mol Pharm. 2016;13:3773–82.

    Article  CAS  Google Scholar 

  20. Paudel A, Ameeduzzafar, Imam SS, Fazil M, Khan S, Hafeez A, Ahmad FJ, et al. Formulation and optimization of candesartan cilexetil nano lipid carrier: in vitro and in vivo evaluation. Curr Drug Del. 2017;14(7):1005–15.

  21. Ameeduzzafar, Bhatnagar A, Kumar N, Ali A. Chitosan nanoparticles amplify the ocular hypotensive effect of carteolol in rabbits. Int J Biol Macromol. 2014;65:479–91.

  22. Imam SS, Ahad A, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: in-vitro characterization, and in-vivo appraisal. Mater Sci Eng C. 2017;75:1198–205.

    Article  CAS  Google Scholar 

  23. Alam S, Aslam M, Khan A, Imam SS, Aqil M, Sultana Y, et al. Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug Del. 2016;23(2):601–9.

    Article  CAS  Google Scholar 

  24. Khan N, Ameeduzzafar KK, Bhatnagar A, Ahmad FJ, Ali A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: statistical design, characterization and in vivo studies. Int J Biol Macromol. 2018;116:648–63.

    Article  CAS  Google Scholar 

  25. Qumbar M, Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: in-vitro characterization and in-vivo activity. Biomed Pharmacother. 2017;93:255–66.

  26. Kapoor H, Aqil M, Imam SS, Sultana Y, Ali A. Formulation of amlodipine nano lipid carrier: formulation design, physicochemical and transdermal absorption investigation. J of Drug Del Sci and Tech. 2019;49:209–18.

    Article  CAS  Google Scholar 

  27. Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61.

    Article  CAS  Google Scholar 

  28. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  Google Scholar 

  29. Korsmeyer RW, Gurnya R, Doelker E, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  30. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.

    CAS  PubMed  Google Scholar 

  31. Garg NK, Sharma G, Singh B, Nirbhavane P, Tyagi RK, Shukla R, et al. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int J Pharm. 2017;517:413–31.

    Article  CAS  Google Scholar 

  32. Kasagic I, Malenovic A, Jovanovic M, Rakic T, Jancic Stojanovic B, Ivanovic D. Chemometrically assisted optimization and validation of RP-HPLC method for the analysis of itraconazole and its impurities. Acta Pharma. 2013;63:159–73.

    Article  Google Scholar 

  33. Sintov A, Zeevi A, Uzan R, Nyska A. Influence of pharmaceutical gel vehicles containing oleic acid/sodium oleate combinations on hairless mouse skin, a histological evaluation. Eur J Pharm Biopharm. 1999;47(3):299–303.

    Article  CAS  Google Scholar 

  34. Mendes AI, Silva AC, Catita JA, Cerqueira F, Gabriel C, Lopes CM. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity. Colloids Surf B: Biointerfaces. 2013;111:755–63.

    Article  CAS  Google Scholar 

  35. Tian B, Yan Q, Wang J, Ding C, Sai S. Enhanced antifungal activity of voriconazole-loaded nanostructured lipid carriers against Candida albicans with a dimorphic switching model. Int J Nanomedicine. 2017;12:7131–41.

    Article  CAS  Google Scholar 

  36. Zhang X, Liu J, Qiao H, Liu H, Ni J, Zhang W, et al. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol. 2010;197:120–8.

    Article  CAS  Google Scholar 

  37. Emami J, Rezazadeh M, Varshosaz J, Tabbakhian M, Aslani A. Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in vivo cytotoxicity. J Nanomater. 2012;12:1–10.

    Article  Google Scholar 

  38. Siekmann B, Westesen K. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf B: Biointerfaces. 1994;3:159–75.

    Article  CAS  Google Scholar 

  39. Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–34.

    Article  CAS  Google Scholar 

  40. Jain SK, Gupta Y, Jain A, Rai K. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes. Drug Del. 2008;15:141–7.

    Article  CAS  Google Scholar 

  41. Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–40.

    Article  CAS  Google Scholar 

  42. Schwarz JC, Baisaeng N, Hoppel M, Low M, Keck CM, Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm. 2013;447:213–7.

    Article  CAS  Google Scholar 

  43. Prinsen MK, Hendriksen CFM, Krul CAM, Woutersen RA. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J of Pharm and Exp Ther. 1944;82:377–90.

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to Unicure Pvt Ltd Noida., India, for providing gift sample of Itraconazole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameeduzzafar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameeduzzafar, Qumber, M., Alruwaili, N.K. et al. BBD-Based Development of Itraconazole Loaded Nanostructured Lipid Carrier for Topical Delivery: In Vitro Evaluation and Antimicrobial Assessment. J Pharm Innov 16, 85–98 (2021). https://doi.org/10.1007/s12247-019-09420-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-019-09420-5

Keywords

Navigation