Skip to main content

Advertisement

Log in

Lamotrigine Lipid Nanoparticles for Effective Treatment of Epilepsy: a Focus on Brain Targeting via Nasal Route

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Background

Pharmaceutical research in the field of medicine aims to improve the quality of life of a patient. Epilepsy is a neurological disorder affecting a number of patients worldwide because of poor penetration of antiepileptic drugs across the blood brain barrier. Therefore, there is a need to find an alternative drug delivery technology to overcome problems associated with conventional therapy.

Objective

The aim of this review is to introduce and understand the importance of targeting lamotrigine to the brain via the nasal route. Mechanism of drug transport via nasal cavity to brain and various strategies to improve drug absorption through nasal cavity.

Methods

Existing route of drug administration of lamotrigine is oral route. The route that has been rarely explored for lamotrigine targeting to the brain such as nasal route of drug administration is focused in this article.

Results

Nanomedicine has gained a lot of importance in the recent past. Many studies have been taken up to deliver drugs to the brain as nanoparticles. In most of the approaches, efforts were made to deliver the nanoparticles either by the oral route or intravenous route of administration. In the present review, we have discussed the current outlook on advances in brain targeting by administration of drug via the nasal route.

Conclusion

Targeting lamotrigine via the nasal route to the brain is a promising delivery system and would be advantageous in the treatment of other poorly bioavailable drugs to treat disorders of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bromfield EB, Cavazos JE, Sirven JI. Clinical epilepsy. In: Bromfield EB, Cavazos JE, Sirven JI, editors. An inroduction to epsilepsy. West Hartford: American Epilepsy Society; 2006.

    Google Scholar 

  2. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsy. 2014;55(4):475–82.

    Article  Google Scholar 

  3. National Center for Chronic Disease Prevention and Health Promotion - At a glance 2016. Chronic disease prevention and health promotion. Centers for disease conrol and prevention. Available at: https://www.cdc.gov/chronicdisease/resources/publications/aag/NCCDPHP.htm. Accessed on February 02, 2018.

  4. Shin HW, Valerie J, Hadar E, et al. Review of epilepsy - etiology, diagnostic evaluation and treatment. Int J Neurorehabilitation. 2014;1:1–8.

    Google Scholar 

  5. Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc. 1996;71(6):576–86.

    Article  CAS  PubMed  Google Scholar 

  6. Giussani G, Cricelli C, Mazzoleni F, Cricelli I, Pasqua A, Pecchioli S, et al. Prevalence and incidence of epilepsy in Italy based on a nationwide database. Neuroepidemiology. 2014;43(3–4):228–32.

    Article  PubMed  Google Scholar 

  7. Santhosh NS, Sinha S, Satishchandra P. Epilepsy: India perspective. Ann Indian Acad Neurol. 2014;15(Suppl 1):S3–11.

    Google Scholar 

  8. What are common statistics about epilepsy? Statistics - epilepsy - about neurological disorders - neurology - Ambry genetics. Available at: http://patients.ambrygen.com/neurology/about-neurological-disorders/epilepsy/statistics. Accessed on July 07, 2017.

  9. Austin JK, Shafer PO, Deering JB. Epilepsy familiarity, knowledge, and perceptions of stigma: report from a survey of adolescents in the general population. Epilepsy Behav. 2002;3(4):368–75.

    Article  PubMed  Google Scholar 

  10. Ansell B, Clarke E. Acetazolamide in treatment of epilepsy. Br Med J. 1956;1(4968):650–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Acetazolamide. National Center for Biotechnology Information. PubChem compound database. US National library of medicine. Avaialble at: https://pubchem.ncbi.nlm.nih.gov/compound/acetazolamide. Accessed on January 29, 2018.

  12. Granero GE, Longhi MR, Becker C, Junginger HE, Kopp S, Midha KK, et al. Biowaiver monographs for immediate release solid oral dosage forms: acetazolamide. J Pharm Sci. 2008;97(9):3691–9.

    Article  CAS  PubMed  Google Scholar 

  13. Dailey JW, Reith ME, Yan QS, et al. Anticonvulsant doses of carbamazepine increase hippocampal extracellular serotonin in genetically epilepsy-prone rats: dose response relationships. Neurosci Lett. 1997;227:13–6.

    Article  CAS  PubMed  Google Scholar 

  14. Macdonald RL, McLean MJ. Anticonvulsant drugs: mechanisms of action. Adv Neurol. 1986;44:713–36.

    CAS  PubMed  Google Scholar 

  15. Weber K, Zeile K, Hauptmann K, et al. 5-phenyl-7-trifluoromethyl-1h-1,5-benzodiazepine-2,4-diones. US Grant - US37115091. 1971.

  16. Shaw SJ, Hartman AL. The controversy over generic antiepileptic drugs. J Pediatr Pharmacol Ther. 2010;15(2):81–93.

    PubMed  PubMed Central  Google Scholar 

  17. Riss J, Cloyd J, Gates J, Collins S. Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand. 2008;118:69–86.

    Article  CAS  PubMed  Google Scholar 

  18. Mennini N, Bragagni M, Maestrelli F, Mura P. Physico-chemical characterization in solution and in the solid state of clonazepam complexes with native and chemically-modified cyclodextrins. J Pharm Biomed Anal. 2014;89:142–9.

    Article  CAS  PubMed  Google Scholar 

  19. Nainar S, Rajiah K, Angamuthu S, et al. Biopharmaceutical classification system in in-vitro/in-vivo correlation: concept and development strategies in drug delivery. Trop J Pharm Res. 2012;11(2):319–29.

    Article  CAS  Google Scholar 

  20. McDonough JH Jr, Zoeffel LD, McMonagle J, et al. Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea pigs. Epilepsy Res. 1999;38(1):1–14.

    Article  Google Scholar 

  21. Bialer M, Soares-da-Silva P. Pharmacokinetics and drug interactions of eslicarbazepine acetate. Epilepsia. 2012;53(6):935–46.

    Article  CAS  PubMed  Google Scholar 

  22. Soares-da-Silva P, Pires N, Bonifácio MJ, Loureiro AI, Palma N, Wright LC. Eslicarbazepine acetate for the treatment of focal epilepsy: an update on its proposed mechanisms of action. Pharmacol Res Perspect. 2015;3(2):e00124.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Proposal to waive in vivo bioequivalence requirements for who model list of essential medicines immediate-release, solid oral dosage forms. WHO technical report series, No. 937, 2006. Available at: http://www.who.int/medicines/areas/quality_safety/quality_assurance/ProposalWaiveVivoBioequivalenceRequirementsModelListEssentialMedicinesImmediateReleaseSolidOralDosageFormsTRS937Annex8.pdf. Accessed on January 08, 2018.

  24. French JA, Abou-Khalil BW, Leroy RF, Yacubian EMT, Shin P, Hall S, et al. Randomized, double-blind, placebo-controlled trial of ezogabine (retigabine) in partial epilepsy. Neurology. 2011;76(18):1555–63.

    Article  CAS  PubMed  Google Scholar 

  25. Verma A, Kumar R, Kumar M. Ezogabine: development and role in the management of epileptic seizures. Mini Rev Med Chem. 2013;13(5):697–705.

    Article  CAS  PubMed  Google Scholar 

  26. Stella V, Borchardt R, Hageman M, et al. Prodrugs: challenges and rewards. Germany: Springer-Verlag; 2007.

    Book  Google Scholar 

  27. Browne TR, Kugler AR, Eldon MA. Pharmacology and pharmacokinetics of fosphenytoin. 1996;46(6 Suppl 1):S3–S7.

  28. Pellock JM. Felbamate in epilepsy therapy: evaluating the risks. 1999;21(3):225–39.

  29. Anderson GD. Understanding the ramifications of switching among AEDs: what are the data? Johns Hopkins Adv Stud Med. 2008;8(7):229–34.

    Google Scholar 

  30. Rumondor A, Dhareshwar SS, Kesisoglou F. Amorphous solid dispersions or prodrugs: complementary strategies to increase drug absorption. J Pharm Sci. 2016;105(9):2498–508.

    Article  CAS  PubMed  Google Scholar 

  31. Beydoun A, Uthman BM, Sackellares JC. Gabapentin: pharmacokinetics, efficacy and safety. Clin Neuropharmacol. 1995;18(6):469–81.

    Article  CAS  PubMed  Google Scholar 

  32. Doty P, Rudd GD, Stoehr T, Thomas D. Lacosamide. Neurotherapeutics. 2007;4(1):145–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rambeck B, Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet. 1993;25(6):433–43.

    Article  CAS  PubMed  Google Scholar 

  34. Depot M, Powell JR, Messenheimer JA, et al. Kinetic effects of multiple oral doses of acetaminophen on a single oral dose of lamotrigine. Clin Pharmacol Ther. 1990;48(4):346–55.

    Article  CAS  PubMed  Google Scholar 

  35. Petruševska M, Berglez S, Krisch I, Legen I, Megušar K, Peternel L, et al. Biowaiver monographs for immediate release solid oral dosage forms: levetiracetam. J Pharm Sci. 2015;104(9):2676–87.

    Article  CAS  PubMed  Google Scholar 

  36. Ghasemi J, Niazi A. Two- and three-way chemometrics methods applied for spectrophotometric determination of lorazepam in pharmaceutical formulations and biological fluids. Anal Chim Acta. 2005;533:169–77.

    Article  CAS  Google Scholar 

  37. Greenblatt DJ, Shader RI, Franke K, MacLaughlin DS, Harmatz JS, Allen MD, et al. Pharmacokinetics and bioavailability of intravenous, intramuscular and oral lorazepam in humans. J Pharm Sci. 1979;68(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  38. Morris ME, Leroy S, Sutton SC. Absorption of magnesium from orally administered magnesium sulfate in man. J Toxicol Clin Toxicol. 1987;25(5):371–82.

    Article  CAS  PubMed  Google Scholar 

  39. McKee JA, Brewer RP, Macy GE, et al. Analysis of the brain bioavailability of peripherally administered magnesium sulfate: a study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit Care Med. 2005;33(3):661–6.

    Article  CAS  PubMed  Google Scholar 

  40. Schmutz M, Brugger F, Gentsch C, McLean MJ, Olpe HR. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. Epilepsia. 1994;35(Suppl 5):S47–50.

    Article  PubMed  Google Scholar 

  41. Nelson E, Powell JR, Conrad K, et al. Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol. 1982;22(2–3):141–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lockman LA, Kriel R, Zaske D, Thompson T, Virnig N. Phenobarbital dosage for control of neonatal seizures. Neurology. 1979;29(11):1445–9.

    Article  CAS  PubMed  Google Scholar 

  43. Widanapathirana L, Tale S, Reineke TM. Dissolution and solubility enhancement of the highly lipophilic drug phenytoin via interaction with poly(N -isopropylacrylamide- co -vinylpyrrolidone) excipients. Mol Pharm. 2015;12(7):2537–43.

    Article  CAS  PubMed  Google Scholar 

  44. Bauer LA, Blouin RA. Age and phenytoin kinetics in adult epileptics. Clin Pharmacol Ther. 1982;31(3):301–4.

    Article  CAS  PubMed  Google Scholar 

  45. Cook J, Addicks W, Wu YH. Application of the biopharmaceutical classification system in clinical drug development—an industrial view. AAPS J. 2008;10(2):306–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koller WC, Royse VL. Efficacy of primidone in essential tremor. Neurology. 1986;36(1):121–4.

    Article  CAS  PubMed  Google Scholar 

  47. Gidal BE, Laurenza A, Hussein Z, Yang H, Fain R, Edelstein J, et al. Perampanel efficacy and tolerability with enzyme-inducing AEDs in patients with epilepsy. Neurology. 2015;84(19):1972–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rektor I. Perampanel, a novel, non-competitive, selective AMPA receptor antagonist as adjunctive therapy for treatment-resistant partial-onset seizures. Expert Opin Pharmacother. 2013;14(2):225–35.

    Article  CAS  PubMed  Google Scholar 

  49. Glauser T, Kluger G, Sachdeo R, Krauss G, Perdomo C, Arroyo S. Rufinamide for generalized seizures associated with Lennox-Gastaut syndrome. Neurology. 2008;70(21):1950–8.

    Article  CAS  PubMed  Google Scholar 

  50. Łuszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep. 2009;61(2):197–216.

    Article  PubMed  Google Scholar 

  51. Pinder RM, Brogden RN, Speight TM, Avery GS. Sodium valproate: a review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs. 1977;13(2):81–123.

    Article  CAS  PubMed  Google Scholar 

  52. Dash A, Singh S, Tolman J. Pharmaceutics: basic principles and application to pharmacy practice. Unted States: Academic Press; 2013.

    Google Scholar 

  53. Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsy. 1995;36(6):612–26.

    Article  CAS  Google Scholar 

  54. Shank RP, Gardocki JF, Streeter AJ, et al. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsy. 2000;41(Suppl 1):S3–9.

    Article  CAS  Google Scholar 

  55. Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid - 1988. Clin Pharmacokinet. 1988;15(6):367–89.

    Article  CAS  PubMed  Google Scholar 

  56. Chan R, Wei C, Chen Y, Benet LZ. Use of the biopharmaceutics drug disposition classification system (BDDCS) to help predict the occurrence of idiosyncratic cutaneous adverse drug reactions associated with antiepileptic drug usage. AAPS J. 2016;18(3):757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hashimoto Y, Odani A, Tanigawara Y, et al. Population analysis of the dose-dependent pharmacokinetics of zonisamide in epileptic patients. Biol Pharm Bull. 1994;17(2):323–6.

    Article  CAS  PubMed  Google Scholar 

  58. Yamauchi T, Aikawa H. Efficacy of zonisamide: our experience. Seizure. 2004;13(Suppl 1):S41–8. discussion S49

    Article  PubMed  Google Scholar 

  59. Macdonald RL, Kelly KM. Antiepileptic drug mechanisms of action. Epsilepsia. 1995;36(Suppl 2):S2–12.

    Article  CAS  Google Scholar 

  60. Chen TC, Da Fonseca CO, Schönthal AH. Perillyl alcohol and its drug-conjugated derivatives as potential novel methods of treating brain metastases. Int J Mol Sci. 2016;17(9):1463.

    Article  CAS  PubMed Central  Google Scholar 

  61. Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  PubMed  Google Scholar 

  62. Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer's disease. Eur J Pharm Sci. 2016;92:224–34.

    Article  CAS  PubMed  Google Scholar 

  63. Goldsmith DR, Wagstaff AJ, Ibbotson T, Perry CM. Lamotrigine: a review of its use in bipolar disorder. Drugs. 2003;63(19):2029–50.

    Article  CAS  PubMed  Google Scholar 

  64. Goldberg JF, Calabrese JR, Saville BR, Frye MA, Ketter TA, Suppes T, et al. Mood stabilization and destabilization during acute and continuation phase treatment for bipolar I disorder with lamotrigine or placebo. J Clin Psychiatry. 2009;70(9):1273–80.

    Article  CAS  PubMed  Google Scholar 

  65. Goa KL, Ross SR, Chrisp P. Lamotrigine. A review of its pharmacological properties and clinical efficacy in epilepsy. Drugs. 1993;46(1):152–76.

    Article  CAS  PubMed  Google Scholar 

  66. Kaminow L, Schimschock JR, Hammer AE, Vuong A. Lamotrigine monotherapy compared with carbamazepine, phenytoin, or valproate monotherapy in patients with epilepsy. Epilepsy Behav. 2003;4(6):659–66.

    Article  PubMed  Google Scholar 

  67. Biton V. Pharmacokinetics, toxicology and safety of lamotrigine in epilepsy. Expert Opin Drug Metab Toxicol. 2006;2(6):1009–18.

    Article  CAS  PubMed  Google Scholar 

  68. FDA approves Lamictal®XR™ (lamotrigine) for conversion to monotherapy for treatment of partial seizures in appropriate patients. Cision PR Newsxire. Apirl 25, 2011. from GlaxoSmithKline. Available at: https://www.prnewswire.com/news-releases/fda-approves-lamictalxr-lamotrigine-for-conversion-to-monotherapy-for-treatment-of-partial-seizures-in-appropriate-patients-120665914.html. Accessed on Nov. 11, 2017.

  69. Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55:1364–75.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev. 2012;64:930–42.

    Article  CAS  PubMed  Google Scholar 

  71. Serralheiro A, Alves G, Fortuna A, Falcão A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm. 2015;490(1–2):39–46.

    Article  CAS  PubMed  Google Scholar 

  72. Schinkel. P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2):179–94.

    Article  CAS  PubMed  Google Scholar 

  73. Refractory epilepsy (difficult to treat seizures)|Epilepsy foundation. Available at: https://www.epilepsy.com/learn/refractory-epilepsy-difficult-treat-seizures. Accessed on July 25, 2017.

  74. Rizzi M, Caccia S, Guiso G, Richichi C, Gorter JA, Aronica E, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci. 2002;22(14):5833–9.

    Article  CAS  PubMed  Google Scholar 

  75. Potschka H, Fedrowitz M, Löscher W. P-glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett. 2002;327(3):173–6.

    Article  CAS  PubMed  Google Scholar 

  76. Volk HA, Löscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain. 2005;128(Pt 6):1358–68.

    Article  PubMed  Google Scholar 

  77. Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 2002;125(Pt 1):22–31.

    Article  CAS  PubMed  Google Scholar 

  78. Ammar HO, Ghorab MM, Mahmoud AA, Higazy IM. Lamotrigine loaded poly-ɛ-(d,l-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur J Pharm Sci. 2018;115:77–87.

    Article  CAS  PubMed  Google Scholar 

  79. Yu A, Lv J, Yuan F, Xia Z, Fan K, Chen G, et al. mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus. Int J Nanomedicine. 2017;12:8353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv. 2015;12(2):181–94.

    Article  CAS  PubMed  Google Scholar 

  81. Mishra B, Arya N, Tiwari S. Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design. Daru. 2010;18(1):1–8.

    CAS  Google Scholar 

  82. Gieszinger P, Csóka I, Pallagi E, Katona G, Jójárt-Laczkovich O, Szabó-Révész P, et al. Preliminary study of nanonized lamotrigine containing products for nasal powder formulation. Drug Des Devel Ther. 2017;11:2453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cacciatore I, Ciulla M, Fornasari E, Marinelli L, di Stefano A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv. 2016;13(8):1121–31.

    Article  CAS  PubMed  Google Scholar 

  84. Ghori MU, Mahdi MH, Smith AM, et al. Nasal drug delivery systems: an overview. Am J Pharmacol Sci. 2015;3(5):110–9.

    CAS  Google Scholar 

  85. Sage MA. Blood-brain barrier: phenomenon of increasing importance to the imaging clinician. AJR Am J Roentgenol. 1982;138(5):887–98.

    Article  CAS  PubMed  Google Scholar 

  86. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  87. Türker S, Onur E, Ózer Y. Nasal route and drug delivery systems. Pharm World Sci. 2004;26(3):137–42.

    Article  PubMed  Google Scholar 

  88. Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94(6):1187–95.

    Article  CAS  PubMed  Google Scholar 

  89. Malerba F, Paoletti F, Capsoni S, Cattaneo A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv. 2011;8(10):1277–96.

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell WG, Conry JA, Crumrine PK, Kriel RL, Cereghino JJ, Groves L, et al. An open-label study of repeated use of diazepam rectal gel (diastat) for episodes of acute breakthrough seizures and clusters: safety, efficacy, and tolerance. Epilepsia. 1999;40(11):1610–7.

    Article  CAS  PubMed  Google Scholar 

  91. Wu H, Hu K, Jiang X. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5(10):1159–68.

    Article  CAS  PubMed  Google Scholar 

  92. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57.

    Article  CAS  PubMed  Google Scholar 

  93. Thorne RG, Emory CR, Ala TA, Frey WH II. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692(1–2):278–82.

    Article  CAS  PubMed  Google Scholar 

  94. Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH II. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.

    Article  CAS  PubMed  Google Scholar 

  95. Dhuria SV, Hanson LR, Frey WH II. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    Article  CAS  PubMed  Google Scholar 

  96. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  CAS  PubMed  Google Scholar 

  97. Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm. 2010;7(3):884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pardeshi CV, Belgamwar VS. Direct nose to the brain drug delivery via integrated nerve pathways by passing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10(07):957–72.

    Article  CAS  PubMed  Google Scholar 

  99. Luzzati V, Benoit E, Charpentier G, Vachette P. X-ray scattering study of pike olfactory nerve: elastic, thermodynamic and physiological properties of the axonal membrane. J Mol Biol. 2004;343(1):199–212.

    Article  CAS  PubMed  Google Scholar 

  100. Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9(Suppl 3):S5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jansson B, Björk E. Visualization of In vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target. 2002;10(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  102. Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target. 1998;5(6):415–41.

    Article  CAS  PubMed  Google Scholar 

  103. Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol. 2001;53(1):3–22.

    Article  CAS  PubMed  Google Scholar 

  104. Kumar TP, Sirisha B, Narayana Raju P, et al. Nasal drug delivery: a potential route for brain targeting. Pharm Innov. 2013;2(1):77–85.

    Google Scholar 

  105. Martin E, Schipper NGM, Verhoef JC, et al. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38.

    Article  Google Scholar 

  106. Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Section II: topical treatment of impaired mucosal membranes. Topical applications and the mucosa. In: Surber C, Elsner P, Farage MA, editors. Karger: Curr Probl Dermatol. 2011;20:20–35.

  107. Gizurarson S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol Pharm Bull. 2015;38:497–506.

    Article  CAS  PubMed  Google Scholar 

  108. Bhise SB, Yadav AV, Avachat AM, Malayandi R. Bioavailability of intranasal drug delivery system. Asian J Pharm. 2008;2(4):201–15.

    Article  Google Scholar 

  109. Mygind T, Lildhold T. Nasal polyposis. In: An inflammatory disease and its treatment. 1st ed. Copenhagen: Munksgaard; 1997. p. 50–60.

    Google Scholar 

  110. Bond SW. Intranasal administration of drugs. In: Ganderton D, Jones TM, editors. Drug delivery to the respiratory tract. Chichester: Ellis Horwood; 1987. p. 133–9.

    Google Scholar 

  111. Washington N, Washington C, Wilson CG. Nasal drug delivery. In: Physiological pharmaceutics – barriers to drug absorption. 2nd ed. London: Taylor and Francis; 2001. p. 199–220.

    Google Scholar 

  112. Marriott C. Mucus and mucociliary clearance in the respiratory tract. Adv Drug Deliv Rev. 1990;5(1–2):19–35.

    Article  CAS  Google Scholar 

  113. Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Drug Deliv. 2016;23(3):671–83.

    Article  CAS  Google Scholar 

  114. Harris AS, Nilsson IM, Wagner ZG, et al. Intranasal administration of peptides: nasal deposition, biological response and absorption of desmopressin. J Pharm Sci. 1986;75(1):1085–8.

    Article  CAS  PubMed  Google Scholar 

  115. Hallworth GW, Padfield JM. A comparison of the regional deposition in a model nose of a drug discharged from metered aerosol and metered-pump nasal delivery systems. J Allery Clin Immunol. 1986;77(2):348–53.

    Article  CAS  Google Scholar 

  116. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967–75.

    Article  CAS  PubMed  Google Scholar 

  117. Shang Y, Dong J, Inthavong K, Tu J. Comparative numerical modelling of inhaled micron-sized particle deposition in human and rat nasal cavities. Inhal Toxicol. 2015;27(13):694–705.

    Article  CAS  PubMed  Google Scholar 

  118. Sears MR, Asher MI. Inhaler devices, how to use and which to choose. Curr Ther. 1985;26:39–52.

    Google Scholar 

  119. Cheng YS, Yeh HC, Guilmette RA, Simpson SQ, Cheng KH, Swift DL. Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci Technol. 1996;25:274–91.

    Article  CAS  Google Scholar 

  120. Kublik H, Vidgren MT. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev. 1998;29:157–77.

    Article  CAS  PubMed  Google Scholar 

  121. Cheng YS. Mechanisms of pharmaceutical aerosol deposition in the respiratory tract. AAPS PharmSciTech. 2014;15(3):630–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schroeter JD, Kimbell JS, Asgharian B, Tewksbury EW, Singal M. Computational fluid dynamics simulations of submicrometer and micrometer particle deposition in the nasal passages of a Sprague-Dawley rat. J Aerosol Sci. 2012;43:31–44.

    Article  CAS  Google Scholar 

  123. Tian L, Inthavong K, Liden G, et al. Transport and deposition of welding fume agglomerates in a realistic human nasal airway. Ann Occup Hyg. 2016;60:731–47.

    Article  CAS  PubMed  Google Scholar 

  124. Tian L, Shang Y, Dong J, Inthavong K, Tu J. Human nasal olfactory deposition of inhaled nanoparticles at low to moderate breathing rate. J Aerosol Sci. 2017;113:189–200.

    Article  CAS  Google Scholar 

  125. Dong J, Shang Y, Tian L, Inthavong K, Tu J. Detailed deposition analysis of inertial and diffusive particles in a rat nasal passage. Inhal Toxicol. 2018;30(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  126. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II. Delivery of insulin-like growth factor-1 to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481–96.

    Article  CAS  PubMed  Google Scholar 

  127. Throne RG, Hanson LR, Ross M, et al. Delivery of interferon-ß to the monkey nervous system following intranasal administration. Neuroscience. 2008;152:785–97.

    Article  CAS  Google Scholar 

  128. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.

    Article  CAS  PubMed  Google Scholar 

  129. Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic and delivery technology overview. Ther Deliv. 2014;5(6):709–33.

    Article  CAS  PubMed  Google Scholar 

  130. Kumar NN, Gautam M, Lochhead JJ, Wolak DJ, Ithapu V, Singh V, et al. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiological and drug delivery. Sci Rep. 2016;6:31732. https://doi.org/10.1038/srep31732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dahl AR, Hadley WM. Nasal cavity enzymes involved in xenobiotic metabolism: effects on the toxicity of inhalants. Crit Rev Toxicol. 1991;21(5):345–72.

    Article  CAS  PubMed  Google Scholar 

  132. Kumar GP, Kiran S. Strategies and prospects of nasal drug delivery systems. Int J Pharm Sci Res. 2012;3(3):648–58.

    CAS  Google Scholar 

  133. Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005;22(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  134. Wioland MA, Fleury-Feith J, Corlieu P, et al. CFRI, MDR1 and MRP1 immunolocalization in normal human nasal respiratory mucosa. J Histochem Cytochem. 2000;48:1215–22.

    Article  CAS  PubMed  Google Scholar 

  135. Tandel H, Florence K, Misra A. Protein and peptide delivery through respiratory pathway. In: Misra A, editor. Challenges in delivery of therapeutic genomics and proteomics. New York: Elsevier; 2011. p. 429–79.

    Chapter  Google Scholar 

  136. Harris AS, Ohlin M, Lethagen S, Nilsson IM. Effects of concentration and volume on nasal bioavailability and biological response to desmopressin. J Pharm Sci. 1988;77(4):337–9.

    Article  CAS  PubMed  Google Scholar 

  137. Djupesland PG, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. J Aerosol Med Pulm Drug Deliv. 2012;25(5):280–9.

    Article  CAS  PubMed  Google Scholar 

  138. Li L, Gorukanti S, Choi YM, Kim KH. Rapid-onset intranasal delivery of anticonvulsants: pharmacokinetic and pharmacodynamics evaluation in rabbits. Int J Pharm. 2000;199(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  139. Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237:77–85.

    Article  CAS  PubMed  Google Scholar 

  140. Su KSE, Campanale KM, Mendelson GA, et al. Nasal delivery of polypeptide I: nasal absorption of enkephalins in rats. J Pharm Sci. 1985;74:394–8.

    Article  CAS  PubMed  Google Scholar 

  141. Gizurarson S, Marriott C, Martin GP, Bechgaard E. The influence of insulin and some excipients used in nasal insulin preparations on mucociliary clearance. Int J Pharm. 1990;65:243–7.

    Article  CAS  Google Scholar 

  142. Quadir M, Zia H, Needham TE. Development and evaluation of nasal formulations of ketorolac. Drug Deliv. 2000;7(4):239.

    Google Scholar 

  143. Ohwaki T, Ando H, Kakimoto F, Uesugi K, Watanabe S, Miyake Y, et al. Effects of dose, pH and osmolarity on nasal absorption of secretin in rats II: histological aspects of the nasal mucosa in relation to the absorption variation due to the effects of pH and osmolarity. J Pharm Sci. 1987;76(9):695–8.

    Article  CAS  PubMed  Google Scholar 

  144. Ohwaki T, Ando H, Watanabe S, Miyake Y. Effects of dose, pH and osmolarity on nasal absorption of secretin in rats. J Pharm Sci. 1985;74(5):550–2.

    Article  CAS  PubMed  Google Scholar 

  145. Mahato RI, Narang AS. Organ-spefici drug delivery. In: Pharmaceutical dosage forms and drug delivery. 3rd ed. New York: CRC Press; 2017. p. 337–84.

    Google Scholar 

  146. Morvola M, Reinikaine A, Heliovaara M, et al. The effects of some sweetening agents and osmotic pressure on the intestinal absorption of sulfafurazole in the rat. J Pharm Pharmacol. 1979;31(1):615–8.

    Article  Google Scholar 

  147. Sakiya Y, Miyauchi Y, Tsuemura Y. Influence of osmotic pressure and viscosity on intestinal drug absorption. II. Quinine concentration profile in plasma after oral administration of various quinine solutions to rats. Chem Pharm Bull. 1981;29:1470–2.

    Article  CAS  PubMed  Google Scholar 

  148. Furubayashi T, Inoue D, Kamaguchi A, Higashi Y, Sakane T. Influence of formulation viscosity on drug absorption following nasal application in rats. Drug Metab Pharmacokinet. 2007;22(3):206–11.

    Article  CAS  PubMed  Google Scholar 

  149. Harris AS, Ohlin M, Svensson E, Lethagen S, Nilsson IM. Effect of viscosity on the pharmacokinetics and biological response to intranasal desmopressin. J Pharm Sci. 1989;78(6):470–1.

    Article  CAS  PubMed  Google Scholar 

  150. Rathnam. Optimization of systemic nasal delivery of progesterone using polyacrylic acid based gels. A doctoral thesis submitted to The Tamilnadu Dr. MGR Medical University, Guindy, Chennai, India. 2009. pp.8–12. Available at: http://repository-tnmgrmu.ac.in/259/1/1405027gracerathnam.pdf. Accessed on 11th July 2018.

  151. Kushwaha SKS, Keshari RK, Rai AK. Advances in nasal trans-mucosal drug delivery. J Appl Pharm Sci. 2011;1(7):21–8.

    Google Scholar 

  152. Sonvico F, Cliementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10:34. https://doi.org/10.3390/pharmaceutics10010034.

    Article  PubMed Central  CAS  Google Scholar 

  153. Vila A, Gill H, McCallion O, Alonso ḾJ. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release. 2004;98:231–44.

    Article  CAS  PubMed  Google Scholar 

  154. Dhakar RC, Maurya SD, Gupta AK, et al. Microemulsion as a carrier for nose to brain targeting: a review and update. Pharma Science Monitor. 2011;2(2):S49–78.

    Google Scholar 

  155. Graf P. Benzalkonium chloride as a preservative in nasal solutions: re-examining the data. Respir Med. 2001;95(9):728–33.

    Article  CAS  PubMed  Google Scholar 

  156. Batts AH, Marriott C, Martin GP, et al. The effect of some preservatives used in nasal preparations on mucociliary clearance. J Pharm Phamacol. 1989;41(3):156–9.

    Article  CAS  Google Scholar 

  157. Davis SS, Illum L. Absorption enhancers for nasal drug delivery. Clin Pharmacokinet. 2003;42(13):1107–28.

    Article  CAS  PubMed  Google Scholar 

  158. Merkus FWHM, Schipper NGM, Hermens WAJJ, Romeijn SG, Verhoef JC. Absorption enhancers in nasal drug delivery: efficacy and safety. J Control Release. 1993;24(1–3):201–8.

    Article  CAS  Google Scholar 

  159. Allen LV. Compounding nasal preparations. Secundum artem. current & practical compounding information for the pharmacist. Vol. 7, Number 1. Available from: https://www.perrigo.com/business/pdfs/Sec%20Artem%207.1.pdf. Accessed on May 20, 2018.

  160. Pharmaceutical compounding – sterile preparations. USP 35/NF30, 2012. Available from: https://www.snmmi.org/files/docs/USP%20797.pdf. Accessed on May 20, 2018.

  161. Allen LV. Dosage form design: pharmaceutical and formulation considerations. Ansel’s pharmaceutical dosage forms and drug delivery systems. 11th ed. Philadelphia: Wolters Kluwer. 2018. pp. 90–142.

  162. Zaki NM, Award GA, Mortada ND, et al. Rapid-onset intranasal delivery of metoclopramide hydrochloride. Part I. Influence of formulation variables on drug absorption in anesthetized rats. Int J Pharm. 2006;327(1–2):89–96.

    Article  CAS  PubMed  Google Scholar 

  163. Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.

    Article  CAS  PubMed  Google Scholar 

  164. Horvãth T, Ambrus R, Völgyi G, Budai-Szũcs M, Márki Á, Sipos P, et al. Effect of solubility enhancement on nasal absorption of meloxicam. Eur J Pharm Sci. 2016;95:96–102.

    Article  CAS  PubMed  Google Scholar 

  165. Jadhav KR, Gambhire MN, Shaikh IM, Kadam VJ, Pisal SS. Nasal drug delivery system- factors affecting and applications. Curr Drug Ther. 2007;2:27–38.

    Article  CAS  Google Scholar 

  166. Illum L. The nasal delivery of peptides and proteins. Trends Biotechnol. 1991;9(1):284–9.

    Article  CAS  PubMed  Google Scholar 

  167. Donovan MD, Flynn GL, Amidon GL. The molecular weight dependence of nasal absorption: the effect of absorption enhancers. Pharm Res. 1990;7(8):808–15.

    Article  CAS  PubMed  Google Scholar 

  168. Fisher AN, Brown K, Davis SS, Parr GD, Smith DA. The effect of molecular size on the nasal absorption of water-soluble compounds in the albino rat. J Pharm Pharmacol. 1987;39:357–62.

    Article  CAS  PubMed  Google Scholar 

  169. Yasir M, Sara UVS. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B. 2014;4(6):454–63.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res Int. 2017;Article ID 5984014,18 pages.

  171. Srinivas NSK, Verma R, Kulyadi GP, Kumar L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro and in vivo characterization. Int J Nanomedicine. 2017;12:15–28.

    Article  CAS  Google Scholar 

  172. Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14(9):3754–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Billotte A, Dunn PJ, Henry BT, et al. Intranasal formulations for treating sexual disorders. CA Grant CA2275554C. 1999.

  174. Vidgren MT, Kublik H. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev. 1998;29(1–2):157–77.

    CAS  PubMed  Google Scholar 

  175. Garcia GJM, Kimbell JS. Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region. Inhal Toxicol. 2009;21(14):1165–75.

    Article  CAS  PubMed  Google Scholar 

  176. Garcia GJM, Schroeter JD, Kimbell JS. Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol. 2015;27(8):394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gross EA, Swenberg JA, Fields S, Popp JA. Comparative morphometry of the nasal cavity in rats and mice. J Anat. 1982;135:83–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hussain MA, Koval CA, Shenvi AB, Aungst BJ. Recovery of rat nasal mucosa from the effects of aminopeptidase inhibitors. J Pharm Sci. 1990;79(5):398–400.

    Article  CAS  PubMed  Google Scholar 

  180. Donnelly A, Kellaway IW, Taylor G, Gibson M. Absorption enhancers as tools to determine the route of nasal absorption of peptides. J Drug Target. 1998;5(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  181. Marttin E, Verhoef JC, Merkus FWHM. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J Drug Target. 1998;6(1):17–36.

    Article  CAS  PubMed  Google Scholar 

  182. Merkus FWHM, Schipper NGM, Hermens WAJJ, Romeijn SG, Verhoef JC. Absorption enhancers in nasal drug delivery: efficacy and safety. J Control Release. 1993;24:201–8.

    Article  CAS  Google Scholar 

  183. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecule. 2015;20:14451–73.

    Article  CAS  Google Scholar 

  184. Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. Front Life Sci. 2013;7(4):112–22.

    Article  CAS  Google Scholar 

  185. Kim K, Yoon I, Chun I, Lee N, Kim T, Gwak HS. Effects of bile salts on the lovastatin pharmacokinetics following oral administration to rats. Drug Deliv. 2011;18:79–83.

    Article  CAS  PubMed  Google Scholar 

  186. Moses AC, Gordon GS, Carey MC, Flier JS. Insulin administration intranasally as an insulin-bile salt aerosol: effectiveness and reproducibility in normal and diabetic subjects. Diabetes. 1983;32:1040–7.

    Article  CAS  PubMed  Google Scholar 

  187. Pan L, Zhou J, Ju F, Zhu H. Intranasal delivery of α-asarone to the brain with lactoferrin-modified Mpeg-pla nanoparticles prepared by premix membrane emulsification. Drug Deliv Transl Res. 2018;8:83–96.

    Article  CAS  PubMed  Google Scholar 

  188. Lee WA, Narog BA, Patapoff TW, John Wang Y. Intranasal bioavailability of insulin powder formulations: effect of permeation enhancer-to-protein ratio. J Pharm Sci. 1991;80(8):725–9.

    Article  CAS  PubMed  Google Scholar 

  189. Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv. 2016;23(6):1847–67.

    CAS  PubMed  Google Scholar 

  190. Suzuki Y, Makino Y. Mucosal drug delivery using cellulose derivatives as a functional polymer. J Control Release. 1999;62(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  191. Hou D, Xie C, Huang K, Zhu CH. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 2003;24(10):1781–5.

    Article  CAS  PubMed  Google Scholar 

  192. Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.

    Article  CAS  PubMed  Google Scholar 

  193. Wermeling DP. System and method for intranasal administration of lorazepam. US Patent Number 6610271. 2003.

  194. Choi YM, Kim KH. Transnasal microemulsions containing diazepam. US Application -US20050002987 A1. 2004.

  195. Gustow E, Ryde T, Cooper ER. Nanoparticulate topiramate formulations. US Grant - US7390505 B2. 2008.

  196. Costantino HR, Li CY, Kasi GK. Formulation for intranasal administration of diazepam. WO Application - WO2009046444 A2. 2008.

  197. Bergenhem N, Reppuccci C, Li Z. Nasal formulations of benzodiazepine. WO Application - WO2012135536 A1. 2012.

  198. Cartt S, Medeiros D, Gwozdz GT. Administration of benzodiazepine compositions. US Application -WO2012174158 A3. 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangurde, P.K., Ajitkumar B., N. & Kumar, L. Lamotrigine Lipid Nanoparticles for Effective Treatment of Epilepsy: a Focus on Brain Targeting via Nasal Route. J Pharm Innov 14, 91–111 (2019). https://doi.org/10.1007/s12247-018-9343-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9343-z

Keywords

Navigation