Skip to main content
Log in

Development of Chitosan and Alginate Nanocapsules to Increase the Solubility, Permeability and Stability of Curcumin

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Curcumin (CUR), a natural polyphenolic compound, has several pharmacological uses, primarily regarding its anti-inflammatory, chemotherapeutic, and antioxidant properties. However, to date, a significant drawback of curcumin is its poor bioavailability due to its low solubility and permeability. Therefore, the association of curcumin in polymeric nanocapsules may be an excellent strategy to increase its bioavailability.

Methods

Two nanocapsule systems were developed with an oily core of vitamin E surrounded by a biodegradable polymeric shell of either chitosan (NC-CS) or alginate (NC-ALG) capable of improving the encapsulation efficiency, stability, and permeability of CUR. NC-CS and NC-ALG showed particle sizes of approximately 116.7 ± 3.2 and 178 ± 7.9 nm, dispersities of 0.107 and 0.149, and zeta potentials of 24.4 ± 2.1 and − 49.0 ± 2.3 mV, respectively.

Results

The encapsulation efficiency was approximately 90% in both cases, and they were demonstrated to be stable under storage conditions for 3 months. Cytotoxicity studies performed in Caco-2 cells using the method of trypan blue dye revealed that even at a high concentration of chitosan and alginate (157.9 μg/cm2 or 600 mg/mL), both of the nanocapsules were not toxic, exhibiting cell viability > 80%. The permeability was evaluated using Caco-2 cells as an in vitro model of the epithelial barrier. The obtained results show that the permeability of NC-CS and NC-ALG encapsulated CUR was considerably higher compared to that of an aqueous suspension.

Conclusions

The obtained results suggest that nanocapsules could improve the solubility, permeability, and stability of curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ak T, Gülçin İ. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174:27–37. Available from: http://www.sciencedirect.com/science/article/pii/S0009279708002573

    Article  CAS  PubMed  Google Scholar 

  2. Priyadarsini IK. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19:20091–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Began G, Sudharshan E, Appu Rao AG. Inhibition of lipoxygenase one by phosphatidylcholine micelles-bound curcumin. Lipids Germany. 1998;33:1223–8.

    Article  CAS  Google Scholar 

  4. Chan MM-Y, Huang H-I, Fenton MR, Fong D. In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol. 1998;55:1955–62. Available from: http://www.sciencedirect.com/science/article/pii/S0006295298001142

    Article  CAS  PubMed  Google Scholar 

  5. Menon VP, Sudheer AR. In: Aggarwal BB, Surh Y-J, Shishodia S, editors. Antioxidant and anti-inflammatory properties of curcumin—the molecular targets and therapeutic uses of curcumin in health and disease. Boston: Springer US; 2007. p. 105–25. Available from: https://doi.org/10.1007/978-0-387-46401-5_3.

    Google Scholar 

  6. Wongcharoen W, Phrommintikul A. The protective role of curcumin in cardiovascular diseases. Int J Cardiol. 2009;133:145–51. Available from: http://www.sciencedirect.com/science/article/pii/S0167527309001132

    Article  PubMed  Google Scholar 

  7. Hamaguchi T, Ono K, Yamada M. REVIEW: curcumin and Alzheimer’s disease. CNS Neurosci Ther England. 2010;16:285–97.

    Article  CAS  Google Scholar 

  8. Mythri RB, Bharath MMS. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des Netherlands. 2012;18:91–9.

    Article  CAS  Google Scholar 

  9. Maradana MR, Thomas R, O’Sullivan BJ. Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res Germany. 2013;57:1550–6.

    Article  CAS  Google Scholar 

  10. Sahebkar A. Dual effect of curcumin in preventing atherosclerosis: the potential role of pro-oxidant–antioxidant mechanisms. Nat Prod Res [Internet]. Taylor & Francis; 2015;29:491–2. Available from: https://doi.org/10.1080/14786419.2014.956212.

  11. Wanninger S, Lorenz V, Subhan A, Edelmann FT. Metal complexes of curcumin—synthetic strategies, structures, and medicinal applications. Chem Soc Rev [Internet]. The Royal Society of Chemistry; 2015;44:4986–5002. Available from: https://doi.org/10.1039/C5CS00088B

  12. López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. Wiley Online Library; 2008;52.

  13. Tuorkey M. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci Akadémiai Kiadó. 2014;6:139–46.

    Google Scholar 

  14. Mazzarino L, Dora CL, Bellettini IC, Minatti E, Cardoso SG, Lemos-Senna E. Curcumin-loaded polymeric and lipid nanocapsules: preparation, characterization and chemical stability evaluation. Lat Am J Pharm. 2010;29:933–40.

    CAS  Google Scholar 

  15. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm ACS Publications. 2007;4:807–18.

    Article  CAS  Google Scholar 

  16. Lin C-C, Lin H-Y, Chen H-C, Yu M-W, Lee M-H. Stability and characterization of phospholipid-based curcumin-encapsulated microemulsions. Food Chem Elsevier. 2009;116:923–8.

    Article  CAS  Google Scholar 

  17. Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. Dove Press; 2016;10:483.

  18. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release Elsevier. 2004;100:5–28.

    Article  CAS  Google Scholar 

  19. Szymańska E, Winnicka K. Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs Multidiscip Digital Publish Inst. 2015;13:1819–46.

    Google Scholar 

  20. Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U. Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym. 2008;74:209–14. Available from: http://www.sciencedirect.com/science/article/pii/S0144861708000817

    Article  CAS  Google Scholar 

  21. Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan-alginate nanocapsules. J food drug Anal Elsevier. 2015;23:560–8.

    Article  CAS  Google Scholar 

  22. Suhaimi SH, Roslic NA. Effects of formulation parameters on particle size and polydispersity index of Orthosiphon stamineus loaded nanostructured lipid carrier. J Adv Res Appl Sci Eng Technol. 2015;1:36–9.

    Google Scholar 

  23. Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm. 2012;423:419–27. Available from: http://www.sciencedirect.com/science/article/pii/S0378517311011422

    Article  CAS  Google Scholar 

  24. Fresta M, Cavallaro G, Giammona G, Wehrli E, Puglisi G. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials. 1996;17:751–8. Available from: http://www.sciencedirect.com/science/article/pii/0142961296814116

    Article  CAS  PubMed  Google Scholar 

  25. Vårum KM, Smidsrød O. Structure-property relationship in chitosans. In: Polysaccharides: structural diversity functional versatility. New York: Marcel Dekker; 2005. p. 625–42.

    Google Scholar 

  26. Rokhati N, Widjajanti P, Pramudono B, Susanto H. Performance comparison of α - and β-amylases on chitosan hydrolysis. ISRN Chem Eng. 2013;2013:186159.

    Article  CAS  Google Scholar 

  27. Danhier F, Lecouturier N, Vroman B, Jerome C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release Netherlands. 2009;133:11–7.

    Article  CAS  Google Scholar 

  28. Thipparaboina R, Chavan RB, Shastri NR. Nanocrystals for delivery of therapeutic agents. Part Technol Deliv Ther. Springer; 2017. p. 291–316.

  29. Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, et al. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep. Nat Publ Group. 2016;6:19768.

    CAS  Google Scholar 

  30. Guarino V, Caputo T, Altobelli R, Ambrosio L. Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. Aims Press; 2015;

  31. Marković D, Zarubica A, Stojković N, Vasić M, Cakić M, Nikolić G. Alginates and similar exopolysaccharides in biomedical application and pharmacy: controlled delivery of drugs. Adv Technol. 2016;5:39–52.

    Article  Google Scholar 

  32. Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products. Toxicology Elsevier. 2012;291:10–7.

    Article  CAS  Google Scholar 

  33. Ma H, Qi X, Maitani Y, Nagai T. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm [Internet]. 2007;333:177–86. Available from: http://www.sciencedirect.com/science/article/pii/S0378517306008131

  34. Huang M, Khor E, Lim L-Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res United States. 2004;21:344–53.

    CAS  Google Scholar 

  35. Schipper NG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res United States. 1996;13:1686–92.

    CAS  Google Scholar 

  36. Prego C, Fabre M, Torres D, Alonso MJ. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res. United States. 2006;23:549–56.

    CAS  Google Scholar 

  37. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials Netherlands. 2003;24:1121–31.

    Article  CAS  Google Scholar 

  38. Pasternak AS, Miller WM. Measurement of trans-epithelial electrical resistance in perfusion: potential application for in vitro ocular toxicity testing. Biotechnol Bioeng United States. 1996;50:568–79.

    Article  CAS  Google Scholar 

  39. Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci [Internet]. 2001;14:201–7. Available from: http://www.sciencedirect.com/science/article/pii/S0928098701001725

    Article  Google Scholar 

  40. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev Netherlands. 2010;62:59–82.

    Article  CAS  Google Scholar 

  41. Xiang Y, Liu Y, Mi B, Leng Y. Hydrated polyamide membrane and its interaction with alginate: a molecular dynamics study. Langmuir United States. 2013;29:11600–8.

    Article  CAS  Google Scholar 

  42. Nafee N, Schneider M, Schaefer UF, Lehr C-M. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm Netherlands. 2009;381:130–9.

    Article  CAS  Google Scholar 

  43. Rodrigues S, Dionisio M, Lopez CR, Grenha A. Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater Switzerland. 2012;3:615–41.

    Article  CAS  Google Scholar 

  44. Zhao L, Yang G, Shi Y, Su C, Chang J. Co-delivery of Gefitinib and chloroquine by chitosan nanoparticles for overcoming the drug acquired resistance. J Nanobiotechnology England. 2015;13:57.

    Article  CAS  Google Scholar 

  45. Salatin S, Yari KA. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med England. 2017;21:1668–86.

    Article  CAS  Google Scholar 

  46. Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci Elsevier. 2008;97:3518–90.

    Article  CAS  Google Scholar 

  47. Li Q, Liu C-G, Yu Y. Separation of monodisperse alginate nanoparticles and effect of particle size on transport of vitamin E. Carbohydr Polym England. 2015;124:274–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Arkansas Bioscience Institute under the project: Development of an avian model for evaluation early enteric microbial colonization on the gastrointestinal tract and immune function.

Funding

The authors thank the CONACyT for the doctoral scholarship number 447447 and the financial support obtained through the program PAPIIT IN218115 of DGAPA-UNAM.

Author information

Authors and Affiliations

Authors

Contributions

Daniel Hernández-Patlán, Bruno Solís-Cruz, Mario Alberto Cano-Vega, Eric Beyssac, Ghislain Garrait, Guillermo Tellez, Raquel López-Arellano, and Gustavo R. Rivera-Rodriguez contributed to the overall study design and supervised all research. Daniel Hernández-Patlán, Bruno Solis-Cruz, and Mario Alberto Cano-Vega carried out the experiments and acquisition of data. Daniel Hernández-Patlán, Gustavo R. Rivera-Rodriguez, and Guillermo Tellez drafted and revised the first version of the manuscript. Daniel Hernández-Patlán, Bruno Solís-Cruz, Eric Beyssac, Ghislain Garrait, Raquel López-Arellano, Guillermo Tellez, and Gustavo R. Rivera-Rodriguez analyzed the data. Xochitl Hernandez-Velasco, Guillermo Tellez, and Gustavo R. Rivera-Rodriguez drafted the article and revised it critically for important intellectual content. Daniel Hernández-Patlán, Xochitl Hernandez-Velasco, and Guillermo Tellez were also responsible for the final editing of the manuscript. All the authors reviewed and finally approved the manuscript.

Corresponding author

Correspondence to Guillermo Tellez.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Patlan, D., Solis-Cruz, B., Cano-Vega, M.A. et al. Development of Chitosan and Alginate Nanocapsules to Increase the Solubility, Permeability and Stability of Curcumin. J Pharm Innov 14, 132–140 (2019). https://doi.org/10.1007/s12247-018-9341-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9341-1

Keywords

Navigation