Skip to main content
Log in

Preparation and Optimization of N-Acetylcysteine Nanosuspension through Nanoprecipitation: An Artificial Neural Networks Study

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Nanosuspensions, as a promising strategy to improve the solubility and bioavailability of poorly water soluble drugs, have been widely investigated in recent years. However, no comprehensive work so far has detailed the effect of independent processing/formulation parameters on the quality of the prepared nanosuspension.

Methods

In the present study, the relations between solvent flow rate, stirring rate of antisolvent and surfactant concentration (i.e., inputs) on size, and polydispersity index (PDI) (i.e., outputs) of an N-acetylcysteine nanosuspension were investigated using artificial neural networks (ANNs).

Results and conclusion

The response surfaces, generated as 3D graphs after ANNs modeling, demonstrated that all the three factors have a reverse effect on size and PDI. The dominant factor appeared to be the concentration of surfactant. Overall, it was found that the optimum formulation (i.e., minimum size and PDI value) is obtained at high values of surfactant concentration, solvent flow rate, and stirring rate (i.e., >0.9 mg/ml and 120 ml/h and 500 rpm, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aghajani, M., A. R. Shahverdi, S. M. Rezayat, M. A. Amini and A. Amani. Preparation and optimization of acetaminophen nanosuspension through nanoprecipitation using microfluidic devices- an artificial neural networks study. Pharm Dev Technol: 2012. In press.

  2. Amani, A. and D. Mohammadyani. Artificial Neural Networks: Applications in Nanotechnology. Artificial Neural Networks- Application. C.-L. Hui. Rijeka, INTECH. 2011.

  3. Amani A, York P, Chrystyn H, Clark BJ. Factors affecting the stability of nanoemulsions—Use of artificial neural networks. Pharm Res. 2010;27(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  4. Amani A, York P, Chrystyn H, Clark BJ, Do DQ. Determination of factors controlling the particle size in nanoemulsions using artificial neural networks. Eur J Pharm Sci. 2008;35(1–2):42–51.

    Article  CAS  PubMed  Google Scholar 

  5. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  6. Bas D, Boyacı İH. Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng. 2007;78(3):846–54.

    Article  CAS  Google Scholar 

  7. Belbella A, Vauthier C, Fessi H, Devissaguet J-P, Puisieux F. In vitro degradation of nanospheres from poly (D, L-lactides) of different molecular weights and polydispersities. Int J Pharm (Amsterdam, Neth). 1996;129(1):95–102.

    CAS  Google Scholar 

  8. Bodmeier R, McGinity JW. Solvent selection in the preparation of poly (DL-lactide) microspheres prepared by the solvent evaporation method. Int J Pharm (Amsterdam, Neth). 1988;43(1):179–86.

    CAS  Google Scholar 

  9. Chen X, Young TJ, Sarkari M, Williams RO, Johnston KP. Preparation of cyclosporine a nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm (Amsterdam, Neth). 2002;242(1):3–14.

    CAS  Google Scholar 

  10. Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci & Tech. 2007;4(2):139–53.

    Google Scholar 

  11. Dekhuijzen PNR. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 2004;23(4):629–36.

    Article  CAS  PubMed  Google Scholar 

  12. Esmaeilzadeh-Gharedaghi, E., M. A. Faramarzi, M. A. Amini, A. Rouholamini Najafabadi, S. M. Rezayat and A. Amani. Effects of processing parameters on particle size of chitosan nanoparticles prepared using sonication methodology: an artificial neural networks study. Pharm Dev Technol. 2013. In press.

  13. Gradl J, Peukert W. Characterization of micro mixing for precipitation of nanoparticles in a T-mixer. Micro Macro Mixing. 2010;49:105–24.

    Article  Google Scholar 

  14. Gregg, K. A. Synthesis, characterization and morphological control of transition metal pnictide nanoparticles: Influence of size and shape on magnetic properties. PhD, Wayne State University; 2007.

  15. IntelligensysLtd. INForm Manual; 2009.

  16. Kakran M, Sahoo NG, Tan IL, Li L. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 2012;14:751.

    Article  Google Scholar 

  17. Kesisoglou F, Panmai S, Wu Y. Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  CAS  PubMed  Google Scholar 

  18. Lieberman, H. A. Pharmaceutical dosage forms: Disperse systems, Informa HealthCare; 1998.

  19. Lipinski CA. Poor aqueous solubility-an industry wide problem in ADME screening. Am Pharm Rev. 2002;5:82–5.

    Google Scholar 

  20. List, M. and H. Sucker. Hydrosols of pharmacologically active agents and their pharmaceutical compositions comprising them, US Patent 5,389,382. 1995.

  21. Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, et al. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 2012;13(1):295–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm (Amsterdam, Neth). 1995;125(1):91–7.

    CAS  Google Scholar 

  23. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Article  CAS  PubMed  Google Scholar 

  24. Rowe RC, Roberts RJ. Intelligent software for product formulation. London: Taylor & Francis, Inc; 1998.

    Google Scholar 

  25. Sattler KD. Nanoparticles and quantum dots. Boca Raton: CRC Press; 2010.

    Google Scholar 

  26. Shao Q, Rowe RC, York P. Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulation. Eur J Pharm Sci. 2006;28(5):394–404.

    Article  CAS  PubMed  Google Scholar 

  27. Sinko P. Martin’s physical pharmacy and pharmaceutical sciences. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  28. Zhang X, Xia Q, Gu N. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method. Drug Dev Ind Pharm. 2006;32(7):857–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by Iran National Science Foundation, grant No. 91003529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, S., Afrasiabi, A., Karimi Zarchi, A.A. et al. Preparation and Optimization of N-Acetylcysteine Nanosuspension through Nanoprecipitation: An Artificial Neural Networks Study. J Pharm Innov 9, 115–120 (2014). https://doi.org/10.1007/s12247-014-9178-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-014-9178-1

Keywords

Navigation