Skip to main content
Log in

A Review on Mechanisms of Plant Tolerance and Role of Transgenic Plants in Environmental Clean-up

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

This article deals with the advances and implication of phytoremediation technologies with emphasis on remediation of toxic heavy metals from contaminated soil. Most of the conventional remedial technologies are expensive and inhibit the soil fertility and cause negative impacts on various ecosystem services. However, phytoremediation is a cost effective and ecofriendly approach, which does not adversely affect soil properties and ecosystem services. In recent years, major progresses have been made in understanding the physiological mechanisms of metal uptake and transport in hyper accumulators. However, the molecular mechanisms of metal uptake, translocation, accumulation and detoxification in plants and their further implication in transgenic development for efficient phytoremediation are not well understood. In view of above, present review article brings together existing bits of information to create a new direction for future research, critical gap in knowledge and a new perspective on remediation of toxic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Literature Cited

  • Abhilash, P. C., S. Jamil & N. Singh. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances 27: 474–488.

    Article  PubMed  CAS  Google Scholar 

  • Ahner, S. A., N. M. Price & F. M. M. Morel. 1994. Phytochelatin production by marine phytoplankton at low free metal ion concentrations: Laboratory studies and field data from Massachusetts Bay. Proceeding National Academy Science USA 91: 8433–8436.

    Article  CAS  Google Scholar 

  • Aken, B. V. 2008. Transgenic plants for phytoremediation: Helping nature to clean up environmental pollution. Trends in Biotechnology 26: 225–237.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Alonso, J. M., T. Hirayama, G. Roman, S. Nourizadeh & J. R. Ecker. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148–2152.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K., Takahashi, M. 1987. Photoinhibition. pp 227–287. In: D. J. Kyle, et al., (eds). Production and scavenging of active oxygen in photosynthesis.

  • Aslund, M. L. W., B. A. Zeeb, A. Rutter & K. J. Reimer. 2007. In situ phytoextraction of polychlorinated biphenyl-(PCB) contaminated soil. Science of Total Environment 374: 1–12.

    Article  CAS  Google Scholar 

  • Assuncao, A. G. L., P. D. Martins, S. De Folter, R. Vooijs, H. Schat & M. G. M. Aarts. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environment 24: 217–226.

    Article  CAS  Google Scholar 

  • Banuelos, G. S., H. A. Ajaw, B. Mackey, L. Wu, C. Cook, S. Akohoue & S. Zambruzuski. 1997. Evaluation of different plant species used for phytoremediation of high soil selenium. Journal of Environmental Quality 26: 639–646.

    Article  CAS  Google Scholar 

  • Baumann, A. 1885. Das verhalten von zinksatzen gegen pflanzen und im boden. Landwirtsch. Vers-Statn 31: 1–53.

    Google Scholar 

  • Begonia, G. B., C. D. Davis, M. F. T. Begonia & C. N. Gray. 1998. Growth responses of Indian mustard [Brassica juncea (L.) Czern] and its phytoextraction of lead from a contaminated soil. Bulletin in Environmental Contamination Toxicology 61: 38–43.

    Article  CAS  Google Scholar 

  • Belimov, A. A., N. Hontzeas, V. I. Safronova, S. V. Demchinskaya, G. Piluzza, S. Bullitta & B. R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry 37: 241–250.

    Article  CAS  Google Scholar 

  • Belouchi, A., T. Kwan & P. Gros. 1997. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Molecular Biology 33: 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, L. E., J. L. Burkhead, K. L. Hale, N. Terry, M. Pilon & E. A. H. Pilon-Smits. 2003. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality 32: 432–440.

    Article  PubMed  CAS  Google Scholar 

  • Bizily, S. P., T. Kim, M. K. Kandasamy & R. B. Meagher. 2003. Sub cellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiology 131: 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Blaylock, M. J. & J. W. Huang. 2000. Phytoextraction of metals. Pp 53–70. In: I. Raskin & B. D. Ensley (eds). Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York.

    Google Scholar 

  • ———, D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley & I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science Technology 31: 860–865.

    Article  Google Scholar 

  • Chaney, R. L., C. E. Green, E. Filcheva & S. L. Brown. 1994. Sewage sludge: Land utilization and the environment. Pp 205–207. In: C. E. Clapp, W. E. Larson, & R. H. Dowdy (eds). Effect of iron, manganese, and zinc enriched biosolids compost on uptake of cadmium by lettuce from cadmium- contaminated soils. American Soc. Agron, Madison, WI.

    Google Scholar 

  • Chaturvedi, P. K., C. S. Seth & V. Misra. 2006. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere 64: 1109–1114.

    Article  PubMed  CAS  Google Scholar 

  • ———, ——— & ———. 2007. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in Zinc mine tailing. Journal of Hazardous Material 147: 698–705.

    Article  CAS  Google Scholar 

  • Chen, B. D., X. L. Li, H. Q. Tao, P. Christie & M. H. Wong. 2003. The role of arbuscular mycorrhizal in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50: 839–846.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., X. Li & Z. Shen. 2004. Leaching and uptake of heavy metal by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57: 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Citterio, S., N. Prato, P. Fumagalli, R. Aina, N. Massa, A. Santagostino, S. Sgorbati & G. Berta. 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, S., E. J. Kim, D. Neumann & J. L. Schroeder. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal 18: 3325–3333.

    Article  PubMed  CAS  Google Scholar 

  • ———, M. G. Palmgren & U. Kramer. 2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends in Plant Science 7: 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C. S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123: 825–832.

    Article  PubMed  CAS  Google Scholar 

  • ———, M. J. May, R. Howden & B. Rolls. 1998. The glutathione deficient cadmium-sensitive mutant cad2-1 of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant Journal 16: 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. F. T., J. D. Puryear, R. J. Newton, J. N. Egilla & J. A. Saraiva Grossi. 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology 158: 777–786.

    Article  CAS  Google Scholar 

  • Dhankher, O. P., Y. J. Li, B. P. Rosen, J. Shi, D. Salt, J. F. Senecoff, N. A. Sashti & R. B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthase expression. Nature Biotechnology 20: 1140–1150.

    Article  PubMed  CAS  Google Scholar 

  • Doty, S. L. 2008. Enhancing phytoremediation through the use of transgenic plants and endophytes. New Phytologist 179: 318–333.

    Article  PubMed  CAS  Google Scholar 

  • Eapen, S. & S. F. D’Souza. 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances 23: 97–114.

    Article  PubMed  CAS  Google Scholar 

  • Ebbs, S. D. & L. V. Kochian. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environmental Science Technology 32: 802–806.

    Article  CAS  Google Scholar 

  • ———, M. M. Lasat, D. J. Brandy, J. Cornish, R. Gordon & L. V. Kochian. 1997. Heavy metals in the environment: Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality 26: 1424–1430.

    Article  CAS  Google Scholar 

  • Eriksson, M. E., M. Israelsson, O. Olsson & T. Moritz. 2000. Increased gibberellins biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18: 784–788.

    Article  PubMed  CAS  Google Scholar 

  • Evans, K. M., J. A. Gatehouse, W. P. Lindsay, J. Shi, A. M. Tommey & N. J. Robinson. 1992. Expression of the pea metallotionein like genes Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications of Ps MTA function. Plant Molecular Biology 20: 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  • Ezaki, B., R. C. Gardner, Y. Ezaki & H. Matsumoto. 2000. Expression of aluminium induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiology 122: 657–665.

    Article  PubMed  CAS  Google Scholar 

  • Farwell, A. J., S. Vesely, V. Nero, H. Rodriguez, K. McCormack, S. Shah, D. G. Dixon & B. R. Glick. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth promoting bacteria to flooding stress at a metal contaminated field site. Environmental Pollution 147: 540–545.

    Article  PubMed  CAS  Google Scholar 

  • Gisbert, C., R. Ros, A. De Haro, D. J. Walker, M. P. Bernal, R. Serrano & J. Navarro-Avino. 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Reseaech Communication 303: 440–445.

    Article  CAS  Google Scholar 

  • Glick, B. R., D. M. Penrose & J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. Journal of Theor Biology 190: 63–68.

    Article  CAS  Google Scholar 

  • Goto, F., T. Yoshihara & H. Saiki. 1998. Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Research 7: 173–180.

    Article  CAS  Google Scholar 

  • Grill, E., S. Loftier, E. L. Winnacker & M. H. Zenk. 1989. Phytochelatins, the heavy-metal-binding peptides of plants are synthesized from glutathione by a specific γ-glutamyl cysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceeding National Academy Science USA 86: 6838–6842.

    Article  CAS  Google Scholar 

  • Gullner, G., T. Komives & H. Rennenberg. 2001. Enhanced tolerance of transgenic poplar plants over expressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. Journal of Experimental Botany 52: 971–979.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. L. 2002. Cellular mechanism of heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E. & J. D. G. Jones. 1996. Resistance gene-dependent plant defense responses. Plant Cell 8: 1773–1791.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, L., S. Tandy, R. Schulin & B. Nowack. 2005. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science Technology 39: 6819–6824.

    Article  PubMed  CAS  Google Scholar 

  • He, B., X. E. Yang, Y. Z. Wei, Z. Q. Ye & W. Z. Ni. 2002. A new lead resistant and accumulating ecotype-Sedum alfredii H. Acta Bot. Sin. 44: 1365–1370.

    CAS  Google Scholar 

  • Hou, W., X. Chen, G. Song, Q. Wang & C. C. Chang. 2007. Effects of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiology 107: 1059–1066.

    Google Scholar 

  • Howden, R., P. B. Goldsbrough, C. R. Andersen & C. S. Cobbett. 1995. Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology 107: 1059–1066.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J. W., J. Chen, W. R. Berti & S. D. Cunningham. 1997. Phytoremediation of lead contaminated soil: Role of synthetic chelates in lead phytoextraction. Environmental Science Technology 31: 800–805.

    Article  CAS  Google Scholar 

  • ———, M. J. Blaylock, Y. Kapulnik & B. D. Ensley. 1999. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science Technology 32: 2004–2008.

    Article  Google Scholar 

  • Hussein, H., O. N. Ruiz, N. Terry & H. Daniell. 2007. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots and volatilization. Environmental Science Technology 41: 8439–8446.

    Article  PubMed  CAS  Google Scholar 

  • Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel & A. Sessitsch. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology 70: 2667–2677.

    Article  PubMed  CAS  Google Scholar 

  • Inouhe, M. 2005. Phytochelatins. Brazilian Journal of Plant Physiology 17: 65–78.

    Article  CAS  Google Scholar 

  • James, C. A. & S. E. Strand. 2009. Phytoremediation of small organic contaminants using transgenic plants. Current Opinion in Biotechnology 20: 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X. J., Y. M. Luo, Q. G. Zhao, A. J. M. Baker, P. Christie & M. H. Wong. 2003. Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50: 813–818.

    Article  PubMed  CAS  Google Scholar 

  • Karpinski, S. 1997. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 624–640.

    Article  Google Scholar 

  • Karpinska, B. 2000. Antagonistic effects of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. IUBMB Life 50: 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A. G., C. Keuk, T. M. Chaudhry, C. S. Khoo & W. J. Hayes. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41: 197–207.

    Article  PubMed  CAS  Google Scholar 

  • Kirkham, M. B. 2000. EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. International Journal of Phytoremediation 2: 159–172.

    Article  CAS  Google Scholar 

  • Kos, B. & D. Lestan. 2003. Influence of biodegradable ([S, S]-EDDS) and non degradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253: 403–411.

    Article  CAS  Google Scholar 

  • Krämer, U., J. D. Cotter-Howells, J. M. Charnock, A. J. M. Baker & A. C. Smith. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635–638.

    Article  Google Scholar 

  • Lasat, M. M. 2002. Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality 31: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • ———, A. J. M. Baker & L. V. Kochian. 1998. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiology 118: 875–883.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., R. D. Reeves, R. R. Brooks & T. Jaffré. 1977. Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16: 1502–1505.

    Google Scholar 

  • Li, T. Q., X. E. Yang & X. X. Long. 2004. Potential of using Sedum alfredii for phytoremediating multi-metal contaminated soils. Journal of Soil Water Conservation 18: 79–83.

    Google Scholar 

  • Liao, J. P., X. G. Lin, Z. H. Cao, Y. Q. Shi & M. H. Wong. 2003. Interactions between arbuscular mycorrhizae and heavy metals under a sand culture experiment. Chemosphere 50: 847–853.

    Article  PubMed  CAS  Google Scholar 

  • Lombi, E., F. J. Zhao, S. J. Dunham & S. P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality 30: 1919–1926.

    Article  PubMed  CAS  Google Scholar 

  • ———, K. L. Tearall, J. R. Howarth, F. J. Zhao, M. J. Hawkesford & S. P. McGrath. 2002. Influence of iron status on calcium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 128: 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • Long, X. X., X. E. Yang & W. Z. Ni. 2002. Current status and perspective on phytoremediation of heavy metal polluted soils. Journal of Applied Ecology 13: 757–762.

    PubMed  CAS  Google Scholar 

  • Luo, C., Z. Shen, X. Li & A. J. M. Baker. 2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63: 1773–1784.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., A. R. Andrew, J. G. Burken & S. Albers. 2004. Phytoremediation of MTBE with hybrid poplar trees. International Journal of Phytoremediation 4: 157–167.

    Article  CAS  Google Scholar 

  • Macek, T., P. Kotrba, A. Svatos, M. Novakova, K. Demnerova & M. Mackova. 2008. Novel roles for genetically modified plants in environmental protection. Trends in Biotechnology 26: 146–152.

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan, M., S. Poonguzhali & S. A. Torgmin. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L). Chemosphere 69: 220–228.

    Article  PubMed  CAS  Google Scholar 

  • Malcova, R., M. Vosatka & M. Gryndler. 2003. Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology 23: 56–67.

    Article  Google Scholar 

  • Marques, A. P. G. C., A. O. S. S. Rangel & P. M. L. Castro. 2009. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Environmental Science Technology 39: 622–654.

    Article  CAS  Google Scholar 

  • Maser, P., S. Thomine, J. I. Schroeder, J. M. Ward, K. Hirschi, H. Sze, I. N. Talke, A. Amtmann, F. J. M. Maathuis, D. Sanders, J. F. Harper, J. Tchieu, M. Gribskov, M. W. Persans, D. E. Salt, S. A. Kim & M. L. Guerinot. 1998. Phylogenetic relationships within cation transporter families of Arabidopsis. Proceeding National Academy Science USA 95: 12049–12054.

    Article  Google Scholar 

  • Misra, S. & L. Gedamu. 1989. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78: 16–18.

    Article  Google Scholar 

  • Misra, V., A. Tiwari, B. Shukla & C. S. Seth. 2009. Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environmental Monitoring Assessment 155: 467–475.

    Article  CAS  Google Scholar 

  • Mishra, S., S. Srivastava, R. D. Tripathi, R. Kumar, C. S. Seth & D. K. Gupta. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65: 1027–1039.

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi, M., V. Chalavi, M. Novakova-Sura, J. F. Laliberte & M. Sylvestre. 2007. Expression of bacterial biphenyl-chlorophenyl dioxygenase genes in tobacco plants. Biotechnology Bioengineering 97: 496–505.

    Article  PubMed  CAS  Google Scholar 

  • Nanda Kumar, P. B. A., V. Dushenkov, H. Motto & I. Raskin. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science Technology 29: 1232–1238.

    Article  Google Scholar 

  • Pence, N. S., P. B. Larsen, S. D. Ebbs, D. L. D. Letham, M. M. Lasat, D. F. Garvin, D. Eide & L. V. Kochian. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceeding National Academy Science USA 97: 4956–4960.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. A. H., S. Hwang, C. M. Lytle, Y. Zhu, J. C. Tai, R. C. Bravo, Y. Chen, T. Leustek & N. Terry. 1999. Over expression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiology 119: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, E., T. C. S. Sigaud-Kutner, M. A. S. Leitão, O. K. Okamoto, D. Morse & P. Colepicolo. 2003. Heavy metal-induced oxidative stress in algae. Journal of Phycology 39: 1008–1018.

    Article  CAS  Google Scholar 

  • Pollard, J. A., K. D. Powell, F. A. Harper & J. A. C. Smith. 2002. The genetic basis of metal hyperaccumulation in plant. Critical Review in Plant Science 21: 539–566.

    Article  CAS  Google Scholar 

  • Polle, A. 2001. Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defence against oxidative stress. EMBO Journal 14: 5209–5215.

    Google Scholar 

  • Quartacci, M. F., A. Argilla, A. J. M. Baker & F. Navari-Izzo. 2006. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63: 918–925.

    Article  PubMed  CAS  Google Scholar 

  • Rajkuman, M., R. Nagendran, K. J. Lee, W. H. Lee & S. J. Kim. 2006. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62: 741–748.

    Article  CAS  Google Scholar 

  • Raskin, I., R. D. Smith & D. E. Salt. 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology 8: 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W. E. & P. Meuwly. 1995. Phytochelatins and related peptides structure, biosynthesis and function. Plant Physiology 109: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Rugh, C. L., J. F. Seueoff, R. B. Meagher & S. A. Merkle. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology 16: 925–928.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, O. N. & H. Daniell. 2009. Genetic engineering to enhance mercury phytoremediation. Current Opinion in Biotechnology 20: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Rylott, E. L. & N. C. Bruce. 2009. Plants and soil: Engineering plants for the phytoremediation of explosives. Trends in Biotechnology 27: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Salt, D. E., M. Blaylock, P. B. A. N. Kumar, V. Dushenkov, B. D. Ensley, I. Chet & I. Raskin. 1995a. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–475.

    Article  PubMed  CAS  Google Scholar 

  • ———, R. C. Prince, I. J. Pickering & I. Raskin. 1995b. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology 109: 1427–1433.

    PubMed  CAS  Google Scholar 

  • Schafer, H. J., A. Haag-Kerwer & T. Rausch. 1998. cDNA cloning and expression analysis of genes encoding -GSH synthesis in roots of the heavy metal accumulator Brassica juncea L.: Evidence of Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Molecular Biology 37: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, X. F. & J. J. Xia. 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64: 1036–1042.

    Article  PubMed  CAS  Google Scholar 

  • Seth, C. S., P. K. Chaturvedi & V. Misra. 2007. Toxic effect of arsenic and cadmium alone and in combination on Giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environmental Toxicology 22: 539–549.

    Article  PubMed  CAS  Google Scholar 

  • ———, ——— & ———. 2008. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicology Environmental Safety 71: 76–85.

    Article  CAS  Google Scholar 

  • Sylvestre, M., T. Macek & M. Mackova. 2009. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Current Opinion in Biotechnology 20: 242–247.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, K., S. Kashiwagi, H. Mori, C. Ueguchi & T. Mizuno. 1997. Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana. Biochem Biophys Acta 1326: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., H. Nakanishi, S. Kawasaki, N. K. Nishiawa & S. Mori. 2001. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotinamine aminotransferase genes. Nature Biotechnology 19: 466–469.

    Article  PubMed  CAS  Google Scholar 

  • Thomine, S., R. Wang, J. M. Ward, N. M. Crawford & J. I. Schroeder. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceeding National Academy Science USA 97: 4991–4996.

    Article  CAS  Google Scholar 

  • Tong, Y. P., R. Kneer & Y. G. Zhu. 2004. Vacuolar compartmentalization: A second-generation approach to engineering plants for phytoremediation. Trends in Plant Science 9: 7–9.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, N., N. Hirayanagi, M. Okada, H. Miyasaka, K. Hirata, M. H. Zenk & K. Miyamoto. 2002. Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Research Communication 293: 653–659.

    Article  CAS  Google Scholar 

  • Van Aken, B. 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Current Opinion in Biotechnology 20: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Van der Zaal, B. J., L. W. Neuteboom, J. E. Pina, A. N. Chardonnens, H. Schat, J. A. C. Verkleij & P. J. J. Hooykaas. 1999. Over expression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology 199: 1047–1055.

    Article  Google Scholar 

  • Van Steveninck, R. F. M., M. E. Van Steveninck, A. J. Well & D. R. Fernando. 1990. Zinc tolerance and the binding of zinc as zinc phytate in Lemna minor: X-ray microanalytical evidence. Journal of Plant Physiology 137: 140–146.

    Article  Google Scholar 

  • Vassil, A. D., Y. Kapulnik, I. Raskin & D. E. Salt. 1998. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology 117: 447–491.

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk, O. K., S. Mari, Y. P. Lu & P. A. Rea. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proceeding National Academy Science USA 96: 7110–7115.

    Article  CAS  Google Scholar 

  • Vivas, A., B. Biro, J. M. Ruiz-Lozano, J. M. Barea & R. Azcon. 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62: 1523–1533.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. X., N. F. Wu, J. Guo, X. Y. Chu, J. Tian & B. Yao. 2008. Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem Biophys Research Communication 365: 453–458.

    Article  CAS  Google Scholar 

  • Weyens, N., D. van der Lelie, S. Taghavi & J. Vangronsveld. 2009. Phytoremediation: Plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology 20: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Willekens, H. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal 16: 4806–4816.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L. E., J. K. Pittman & J. L. Hall. 2000. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465: 104–126.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L. H., Y. M. Luo, X. R. Xing & P. Christie. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems and Environment 102: 307–318.

    Article  CAS  Google Scholar 

  • Wu, S. C., K. C. Cheung, Y. M. Luo & M. H. Wong. 2006. Effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution 140: 124–135.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Y. Feng, Z. He & P. J. Stoffella. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology 18: 339–353.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. E. & M. J. Yang. 2001. Some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyperaccumulating plant species (Thlaspi). Pp 444–455. In: W. Orst et al. (eds). Plant nutrition-food security and sustainability of agro-ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • ———, X. X. Long, W. Z. Ni & C. X. Fu. 2002. A new Zn hyperaccumulating plant first found in China. China Science Bulletin 47: 1634–1647.

    CAS  Google Scholar 

  • Zaidi, S., S. Usmani, B. R. Singh & J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991–997.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y. G. & B. P. Rosen. 2009. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: From imagination to reality? Current Opinion in Biotechnology 20: 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X. L., A. H. Pilon-Smits, L. Jouanin & N. Terry. 1999. Over expression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiology 119: 73–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Director, Institute of Himalayan Bioresource Technology, Palampur for his keen interest in the present work. Dr. R.D. Singh, Head Biodiversity Division, IHBT, Palampur is gratefully acknowledged for his valuable suggestions in the manuscript. The author is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing the necessary fund requirement in our research works. This is IHBT publication number 2088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekhar Seth.

Additional information

Capsule: ‘ Transgenic plants with desired characters of increased uptake of heavy metals, translocation and detoxification of metals would be an effective approach for environmental clean-up

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth, C.S. A Review on Mechanisms of Plant Tolerance and Role of Transgenic Plants in Environmental Clean-up. Bot. Rev. 78, 32–62 (2012). https://doi.org/10.1007/s12229-011-9092-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-011-9092-x

Keywords

Navigation